Вакуумметр принцип действия



Вакуумметр. Измерение давления разрежённых газов

Измерение вакуума (разницы между атмосферным и фактическим давлением внутри какой-либо изолированной системы) требуется для оценки работоспособности электронных ламп или при фильтровании жидкостей от нерастворимых осадков. На животноводческих фермах вакууммирование используется для работы доильных аппаратов. Во всех этих, и иных подобных случаях применяются вакуумметры различных конструкций и принципа действия.

Основы работы вакуумметров и конструкции

На практике измеряют не чистый вакуум (его в земных условиях создают лишь для исследований глубокого космоса), а разность давлений. Тем не менее, определить такую разницу напрямую довольно сложно. Поэтому чаще используют так называемый косвенный метод, когда измеряют какое-либо характерное свойство газа, а затем сравнивают его с эталонным. Соответственно этому классифицируют и вакуумметры. Известны следующие типы:

  1. Ионизационный, в котором степень разрежения оценивается по длине свободного пробега молекул: чем давление ниже, чем больше эта длина, и тем больше энергии будет выделено в результате состоявшегося столкновения молекул.
  2. Тепловой, использующий принцип, подобный предыдущему, но определяется не энергия столкновения ионизированных частиц газа, а выделяющаяся при этом тепло. Поскольку в тепловых вакуумметрах измерение теплоты проводится при помощи измерительных мостов Томсона, которые собираются из термопар, то такие вакуумметры иногда называют термопарными.
  3. Ёмкостной, оценивающий степень разрежения по деформациям эластичных мембран. В этом случае, правда, измеряется не сам вакуум, а разница давлений до и после местонахождения измерительной мембраны.

  1. Механический или стрелочный, в котором измерительный механизм связан с тонкостенной трубкой, изгибающейся при самых незначительных перепадах давления. По принципу действия эти приборы (вакуумметры Бурдона) более всего напоминают манометры, из-за чего их именуют мановакуумметрами.
  2. Если дополнительно сжать измеряемый газ избыточным давлением, то диапазон показаний прибора, подобного рассмотренному выше, увеличится. Следовательно, обычный манометр можно превратить в вакуумметр компрессионного типа. Такие приборы используют в качестве автомобильных вакуумметров.
  3. Датчиковый, который использует для регистрации фактического давления газа показания первичных узлов слежения. Датчики могут быть конвекционного, пьезорезистивного, электроконтактного, магнитострикционного и электронного типа. По физическому принципу такие вакуумметры не отличаются от перечисленных ранее, однако используют показания от промежуточных устройств, что повышает точность их работы.

Принцип действия вакуумметра

Кроме физических основ работы вакуумметры различаются по способу вывода показаний: он может быть аналоговым, при помощи стрелочного механизма, либо цифровым, путём вывода результатов на дисплей. Стрелочная индикация менее точна, и оценивается визуально, поэтому такие вакуумметры могут использоваться для замеров средней степени точности. Ограничением цифровых вакуумметров считается зависимость их показаний от степени зарядки батареи, питающей аналого-цифровой преобразователь.

Рассмотрим его на примере наиболее прогрессивных и точных вакуумметров, реализующих ионизационный принцип определения степени вакуума. В приборе искусственным образом создаётся разность потенциалов, т. е. газ, находящийся внутри, ионизируется любым из способов: электромагнитным полем, электрическим разрядом, повышением температуры на одном из катодов и т. п. В любом случае равновесное состояние молекул нарушается, что приводит к направленному потоку заряженных частиц от одного полюса к другому. Излучение сопровождается появлением ионного тока, который регистрируется, усиливается и преображается в показания контрольно-воспроизводящего устройства.

Ограничения таких приборов – зависимость показаний от рода газа: с изменением плотности газа интенсивность ионного потока изменяется, что скажется на конечном результате измерения. Поэтому производители подобной техники всегда указывают внешние условия, при которых целесообразна эксплуатация вакуумметра – внешняя температура, плотность газа и т. д. Эксплуатационные достоинства – практически вечный срок службы, поскольку в цифровых вакуумметрах нет трущихся и изнашивающихся узлов.

В противоположность цифровым, аналоговые вакуумметры используют показания определённых физических характеристик воздуха или газа. Например, в стрелочных вакуумметрах измерение положения стрелки происходит вследствие разности давлений – эталонного, на который настроен прибор, и фактического. Использование таких вакуумметров намного проще, но необходимость частой тарировки усложняет их эксплуатацию.

Оптимальным является применение вакуумметров комбинированного действия, к которым относят термопарные. Там в результате нагрева термопарами воздуха внутри прибора изменяется его плотность и теплопроводность. Соответственно изменение плотности вызовет отклонение стрелки от начального положения, а изменение теплопроводности сопровождается появлением термоэмиссионного тока, значения которого отображаются на дисплее. В результате пользователь может сравнивать оба из показаний.

Выбираем подходящий вакуумметр

Обычно используют четыре основных критерия – цена, размеры, точность и воспроизводимость результатов измерения.

Для измерения низкого и среднего вакуума оптимальным сочетанием таких характеристик обладают комбинированные тепловые вакуумметры с термопарными датчиками 2А и 2С (отечественного производства) и АТС Edwards — импортного. Они не имеют трущихся механических частей и нечувствительны к внешним условиям применения и весьма компактны. При вполне приемлемой цене (7…8 тыс. руб.) могут фиксировать давления от 10 -6 мм. рт. ст.

К лабораторному типу рассматриваемых приборов относятся электронные манометрические приборы серии ВИТ от компании Мерадат: ВИТ-1А, ВИТ-2, ВИТ-3, ВМБ и ряд других. Такая техника способна определить степень вакуума в широких пределах, но отличается сложностью и трудоёмкостью предварительной калибровки, для чего необходим вакуумный насос, тарировочный манометр и манометрический преобразователь. Цена приборов – от 8 тыс. руб. для ВИТ- 2, до 15 тыс. руб. для ВИТ-3. Приборы линейки ВИТ способны определить вакуум при давлениях от 10 -7 до 1 мм рт. ст.

Для автомобилистов подходящим выбором является вакуумметр ADD622, при помощи которого возможна оперативная диагностика некоторых узлов автомашин. Точность прибора – 0…70 мм. рт. ст., цена – до 2000 руб.

Вакуумметр принцип действия

Классификация вакуумметров и вакуумных датчиков

Цель данной страницы: не претендуя на «научность» классификации, мы преследуем только одну цель – дать простое описание выпускаемых сегодня вакуумметров основными производителям, и таким образом сделать выбор вакуумметра более осмысленным, особенно пользователями, для которых работа с вакуумным оборудованием является вспомогательной, и знания в области вакуумной техники не являются основными в их профессиональной деятельности. Вакуумметр – манометр для измерения давления разреженного газа (давление которого меньше 1 атм). Манометр – прибор для измерения давления газа или жидкости.

Вакуумметр абсолютного давления и вакуумметр относительного давления – измеряют соответственно абсолютное давление газа или разность давлений (как правило, разность между давлением в измеряемой системе и атмосферным давлением).

Вакуумметры предназначены для показания общего, полного давления, которое равняется сумме парциальных давлений газов. Для измерения парциального давления газа, т.е. давления конкретного газа, входящего в какой-то технологический газ (смесь газов), как правило, используют масс-спектрометрические методы измерения.

Механические вакуумметры

Гидростатические (жидкостные) манометры. Измеряют разность давлений на поверхность жидкости в U-образной трубке. В настоящее время жидкостные вакуумметры практически не используются.

Компрессионный манометр. Компрессионные вакуумметры – разновидность гидростатических манометров, в которых, с целью увеличения измеряемого диапазона, рабочей жидкостью вакуумметра предварительно создается сжатие. Несмотря на то, что приборы неудобны в повседневной работе, они иногда находят своё применение как образцовые (калибровочные) вакуумметры.

Деформационные механические вакуумметры – вакуумметры, предназначенные для измерения низкого вакуума, принцип действия которых основан на деформации рабочего сенсора (пружины или мембраны).

Пружинный и мембранный вакуумметр , в которых для измерения используются только механические части, являются одними из самых дешевых средств измерения низкого вакуума, и обычно имеют стрелочную индикацию. Оба вакуумметра являются газонезависимыми (т.е. показания давления не зависят от типа газа).

Более точной (и соответственно, дорогой) разновидностью мембранного вакуумметра является емкостной диафрагменный вакуумметр. В емкостном вакуумметре изгибаемая мембрана является одной из обложек конденсатора, емкость которого меняется при изменении расстояния между обложками (изгибаемой мембраной и неподвижной второй обложкой). Учитывая, что ёмкость сильно изменяется при изгибе диафрагмы (изменении расстояния между обложками конденсатора), и легко и точно измеряется, данные вакуумметры являются одними за наиболее точных (точность измерения составляет десятые, или сотые процента от показываемого значения). Емкостные вакуумметры являются газонезависимыми. К недостаткам можно отнести небольшой диапазон измерения (обычно 4 порядка, например, от 1 до 1х10 -3 торр, или от 1000 до 0,1 торр) и высокую стоимость.

Тепловые вакуумметры

Тепловой вакуумметр – самый распространённый тип измерения низкого и среднего вакуума благодаря приемлемой точности и невысокой стоимости вакуумметра. Тепловой вакуумметр – это вакуумметр для измерения абсолютного давления. Действие вакуумметра основано на принципе изменения теплопроводности газа при изменении давления газа. Тепловые вакуумметры являются газозависимыми вакуумметрами (показываемое давление зависит от типа газа, т.к. разные газы имеют разную теплопроводность при одном и том же давлении). На рынке, в основном, предлагаются 2 основных типа тепловых вакуумных датчика: термопарный вакуумный датчик и вакуумный датчик Пирани.

Термопарный вакуумный датчик – один из самых дешевых датчиков для измерения низкого и среднего давления. Напряжение на концах термопары зависит от температуры термопары, которая, в свою очередь, зависит от давления вокруг термопары (чем больше давление, тем лучше отводится тепло, и соответственно — температура термопары ниже).

Вакуумный датчик Пирани (вакуумный датчик сопротивления) основан также на принципе зависимости температуры нагреваемой нити от давления окружающего газа. Мостовая электрическая схема, используемая в вакуумном датчике Пирани, обеспечивает более точное измерение давления по сравнению с термопарным датчиком.

Конвекционный вакуумный датчик использует принцип конвекции (перенос теплоты путём перемешивания газа). В конвекционных вакуумных датчиках пространство вокруг нагреваемой нити больше, что обеспечивает возникновение потоков газа и лучшее охлаждение, что повышает их точность по сравнению с термопарными датчиками.

Пьезорезистивные вакуумные датчики

Пьезорезистивные вакуумные датчики служит для точного (по сравнению с тепловыми) измерения вакуума в диапазоне от 1 атм до прим. 1 торр (1 мм.рт.ст), в некоторых моделях – 0,1 торр. Так как пьезорезистивный эффект зависит непосредственно от давления, то данный тип вакуумных датчиков является газонезависимым.

Ионизационные вакуумметры

Для измерения давления в высоком вакууме наиболее доступным способом измерения сильно разреженного газа стало измерение тока, создаваемое предварительно ионизованными атомами газа. Для ионизации атомов газа могут использоваться сильные электрические или электромагнитные поля, поток ускоренных электронов (энергия и количество электронов определяются силой электрического поля, создаваемого внутри вакуумного датчика – чем меньше поле, тем больше и более высокоэнергетичными должны быть электроны, образуемые (или подаваемые извне) в рабочую камеру вакуумного датчика), для ионизации могут быть использованы также радиоактивные вещества, внешние источники излучения (например, СВЧ излучение, потоки элементарных частиц).
На рынке в основном представлены два типа ионизационных высоковакуумных датчиков: магниторазрядный вакуумный датчик (часто называемый вакуумный датчик с холодным катодом) и вакуумный датчик Байард-Альперта (обычно называемый вакуумный датчик с нитью накала). Все ионизационные вакуумметры являются газозависимыми вакуумметрами (т.к. потенциал ионизации у разных газов разный).

Магниторазрядный вакуумный датчик для измерений в высоком вакууме основан на принципе ионизации атомов газа в сильном электрическом поле, ионизация происходит ускоренными электронами, которые благодаря наличию магнитного поля движутся по спиральной траектории, что значительно увеличивает время жизни электронов и, как следствие, их ионизационную способность. Преимуществом высоковакуумных датчиков с холодным катодом является их высокая надежность (в «чистых» вакуумных приложениях высоковакуумные датчики с холодным катодом стабильно работают в течение многих лет). Недостатком, по сравнению с высоковакуумными датчиками с горячим катодом является чуть меньшая точность измерения. Прародителем магнитного электроразрядного высоковакуумного датчика является вакуумный датчик Пеннинга, впервые предложенный в 1937 году.

Высоковакуумный датчик с нитью накала использует принцип термоэлектронной эмиссии для образования потока электронов, которые ионизуют атомы газа, в результате чего образуется электрический ток ионизованных атомов (значение которого пропорционально давлению газа). Данный ток положительных ионов газа регистрируется, и затем пересчитывается в давление.

Принцип действия манометра (стр. 1 из 3)

Принцип действия манометра основан на уравновешивании измеряемого давления силой упругой деформации трубчатой пружины или более чувствительной двухпластинчатой мембраны, один конец которой запаян в держатель, а другой через тягу связан с трибко-секторным механизмом, преобразующим линейное перемещение упругого чувствительного элемента в круговое движение показывающей стрелки.

В группу приборов измеряющих избыточное давление входят:

Манометры — приборы с измерением от 0,06 до 1000 МПа (Измеряют избыточное давление — положительную разность между абсолютным и барометрическим давлением)

Вакуумметры — приборы измеряющие разряжения (давления ниже атмосферного) (до минус 100 кПа).

Мановакуумметры — манометры измеряющие как избыточное (от 60 до 240000 кПа), так и вакуумметрическое (до минус 100 кПа) давление.

Напоромеры -манометры малых избыточных давлений до 40 КПа

Тягомеры -вакуумметры с пределом до минус 40 КПа

Тягонапоромеры -мановакуумметры с крайними пределами не превышающими ±20 кПа

Данные приведены согласно ГОСТ 2405-88

Большинство отечественных и импортных манометров изготавливаются в соответствии с общепринятыми стандартами, в связи с этим манометры различных марок заменяют друг друга. При выборе манометра нужно знать: предел измерения, диаметр корпуса, класс точности прибора. Также важны расположение и резьба штуцера. Эти данные одинаковы для всех выпускаемых в нашей стране и Европе приборов.

Также существуют манометры измеряющие абсолютное давление, то есть избыточное давление+атмосферное

Прибор, измеряющий атмосферное давление, называется барометром.

В зависимости от конструкции, чувствительности элемента различают манометры жидкостные, грузопоршневые, деформационные (с трубчатой пружиной или мембраной). Манометры подразделяются по классам точности: 0,15; 0,25; 0,4; 0,6; 1,0; 1,5; 2,5; 4,0 (чем меньше число, тем точнее прибор).

По назначениям манометры можно разделить на технические — общетехнические, электроконтактные, специальные, самопишушие, железнодорожные, виброустойчивые(глицеринозаполненые), судовые и эталонные (образцовые).

Общетехнические: предназначены для измерения не агрессивных к сплавам меди жидкостей, газов и паров.

Электроконтактные: имеют возможность регулировки измеряемой среды, благодаря наличию электроконтактного механизма. Особенно популярным прибором этой группы можно назвать ЭКМ 1У, хотя он давно снят с производства.

Специальные: кислородные- должны быть обезжирены, так как иногда даже незначительное загрязнение механизма при контакте с чистым кислородом может привести к взрыву. Часто выпускаются в корпусах голубого цвета с обозначением на циферблате О2(кислород); ацетиленовые -не допускают в изготовлении измерительного механизма сплавов меди, так как при контакте с ацетиленом существует опасность образования взрывоопасной ацетиленистой меди; аммиачные-должны быть коррозиестоикими.

Эталонные: обладая более высоким классом точности (0,15;0,25;0,4) эти приборы служат для поверки других манометров. Устанавливаются такие приборы в большинстве случаев на грузопоршневых манометрах или каких-либо других установках способных развивать нужное давление.

Судовые манометры предназначены для эксплуатации на речном и морском флоте.

Железнодорожные: предназначены для эксплуатации на Ж/Д транспорте.

Самопишушие: манометры в корпусе, с механизмом позволяющим воспроизводить на диаграмной бумаге график работы манометра.

Термопроводные манометры основываются на уменьшении теплопроводности газа с давлением. В таких манометрах встроена нить накала, которая нагревается при пропускании через нее тока. Термопара или датчик определения температуры через сопротивление (ДОТС) могут быть использованы для измерения температуры нити накала. Эта температура зависит от скорости с которой нить накала отдаёт тепло окружающему газу и, таким образом, от термопроводности. Часто используется манометр Пирани, в котором используется единственная нить накала из платины одновременно как нагревательный элемент и как ДОТС. Эти манометры дают точные показания в интервале между 10 и 10−3 мм рт. ст., но они довольно чувствительны к химическому составу измеряемых газов.

[править]Две нити накаливания

Одна проволочная катушка используется в качестве нагревателя, другая же используется для измерения температуры через конвекцию.

Манометр Пирани (oдна нить)

Манометр Пирани состоит из металлической проволоки, открытой к измеряемому давлению. Проволока нагревается протекающим через нее током и охлаждается окружающим газом. При уменьшении давления газа, охлаждающий эффект тоже уменьшается и равновесная температура проволоки увеличивается. Сопротивление проволоки является функцией температуры: измеряя напряжение через проволоку и текущий через неё ток, сопротивление (и таким образом давление газа) может быть определено. Этот тип манометра был впервые сконструирован Марчелло Пирани.

Термопарный и термисторный манометры работают похожим образом. Отличие же в том, что термопара и термистор используются для измерения температуры нити накаливания.

Измерительный диапазон: 10−3 — 10 мм рт. ст. (грубо 10−1 — 1000 Па)

Ионизационные манометры — наиболее чувствительные измерительные приборы для очень низких давлений. Они измеряют давление косвенно через измерение ионов образующихся при бомбардировке газа электронами. Чем меньше плотность газа, тем меньше ионов будет образовано. Калибрирование ионного манометра — нестабильно и зависит от природы измеряемых газов, которая не всегда известна. Они могут быть откалибрированы через сравнение с показаниями манометра Мак Леода, которые значительно более стабильны и независимы от химии.

Термоэлектроны соударяются с атомами газа и генерируют ионы. Ионы притягиваются к электроду под подходящим напряжением, известным как коллектор. Ток в коллекторе пропорционален скорости ионизации, которая является функцией давления в системе. Таким образом, измерение тока коллектора позволяет определить давление газа. Имеется несколько подтипов ионизационных манометров.

Измерительный диапазон: 10−10 — 10−3 мм рт. ст. (грубо 10−8 — 10−1 Па)

Большинство ионных манометров делятся на два вида: горячий катод и холодный катод. Третий вид — это манометр с вращающимся ротором более чувствителен и дорог, чем первые два и здесь не обсуждается. В случае горячего катода электрически нагреваемая нить накала создаёт электронный луч. Электроны проходят через манометр и ионизуют молекулы газа вокруг себя. Образующиеся ионы собираются на отрицательно заряженном электроде. Ток зависит от числа ионов, которое, в свою очередь, зависит от давления газа. Манометры с горячим катодом аккуратно измеряют давление в диапазоне 10−3 мм рт. ст. до 10−10 мм рт. ст. Принцип манометра с холодным катодом тот же, исключая, что электроны образуются в разряде созданным высоковольтным электрическим разрядом. Манометры с холодным катодом аккуратно измеряют давление в диапазоне 10−2 мм рт. ст. до 10−9 мм рт. ст. Калибрирование ионизационных манометров очень чувствительно к конструкционной геометрии, химическому составу измеряемых газов, коррозии и поверхностным напылениям. Их калибровка может стать непригодной при включении при атмосферном и очень низком давлении. Состав вакуума при низких давлениях обычно непредсказуем, поэтому масс-спектрометр должен быть использован одновременно с ионизационным манометром для точных измерений.

Ионизационный манометр с горячим катодом Баярда-Алперта обычно состоит из трёх электродов работающих в режиме триода, где катодом является нить накала. Три электрода — это коллектор, нить накала и сетка. Ток коллектора измеряется в пикоамперах электрометром. Разность потенциалов между нитью накала и землёй обычно составляет 30 В, в то время как напряжение сетки под постоянным напражением — 180—210 вольт, если нет опционоальной электронной бомбардировки, через нагрев сетки, которая может иметь высокий потенциал приблизительно 565 Вольт. Наиболее распространенный ионный манометр — это горячим катодом Баярда-Алперта с маленьким ионным коллектором внутри сетки. Стеклянный кожух с отверстием к вакууму может окружать электроды, но обычно он не используется и манометр встраивается в вакуумный прибор напрямую и контакты выводятся через керамическую плату в стене ваккумного устройства. Ионизационные манометры с горячим катодом могут быть повреждены или потерять калибровку если они включаются при атмосферном давлении или даже при низком вакууме. Измерения ионизационных манометров с горячим катодом всегда логарифмичны.

Электроны испущенные нитью накала движутся несколько раз в прямом и обратном направлении вокруг сетки пока не попадут на неё. При этих движениях, часть электронов сталкивается с молекулами газа и формирует электрон-ионные пары (электронная ионизация). Число таких ионов пропорционально плотности молекул газа умноженной на термоэлектронный ток, и эти ионы летят на коллектор, формируя ионный ток. Так как плотность молекул газа пропорциональна давлению, давление оценивается через измерение ионного тока.

Чувствительность к низкому давлению манометров с горячим катодом ограничена фотоэлектрическим эффектом. Электроны, ударяющие в сетку, производят рентгеновские лучи, которые производят фотоэлектрический шум в ионном коллекторе. Это ограничивает диапазон старых манометров с горячим катодом до 10−8 мм рт. ст. и Баярда-Алперта приблизительно к 10−10 мм рт. ст. Дополнительные провода под потенциалом катода в луче обзора между ионным коллектором и сеткой предотвращают этот эффект. В типе извлечения ионы притягиваются не проводом, а открытым конусом. Поскольку ионы не могут решить, какую часть конуса ударить, они проходят через отверстие и формируют ионный луч. Этот луч иона может быть передан нa кружку Фарадея.

Вакуумметры и их типы — все они есть у нас в продаже

Ионизационный вакуумметр с горячим катодом

Термическая эмиссия — это самый простой способ образования электронов, необходимых для ионизации. Катод (филамент) накаляется высоким электрическим током. При повышенной температуре электроны отрываются от атомов, ускорятся электрическим полем и используются для ионизации газа.
Кроме филамента, вакуумметр с горячим катодом обычно состоит ещё из решеткообразного цилиндрического анода и ионной ловушки. Филамент и аноды находятся на различных положительных потенциалах, коллектор на массе . Величиной измерения датчика горячего катода является разрядный ток, который возникает при выходе положительно заряженных частиц с коллектора. Сам катод/филамент – используется исключительно для образования электронов. Датчик Байард-Альперта считается самым распространённым типом датчиков с горячим катодом.

Ионизационный вакуумметр с холодным катодом

В холодном катоде газ ионизируется путём столкновения с электронами, двигающимися в скрещенных электрических и магнитных полях по спиралевидным траекториям. При высоком напряжении между катодом и анодом все электрически заряженные частицы, находящиеся в остаточном газе, ускоряются и движутся к соответствующему электроду. При этом они сами могут ионизировать другие молекулы, соударяясь с ними, или вызывать образование вторичных электронов. Движущиеся к аноду электроны и устремляющиеся к катоду ионы вызывают процесс газового разряда. Остаточный газ в холодном катоде ионизируется электронами. При низком давлении очень важно, чтобы они как можно дольше оставались в области ионизации. Таким образом, повышается вероятность ионизации и продолжительность газового разряда. Дополнительное внешнее магнитное поле усиливает действие процесса.

Комбинированный вакуумметр

Часто в вакуумных процессах необходимо применять несколько принципов измерения, чтобы достичь необходимой точности измерения или охватить большой диапазон давления. В этом случае используются вакуумметры, объединяющие различные принципы измерения в одном приборе. Обычные комбинации — это Байард-Альперт + Пирани (например, ATMION®), инвертированный магнетрон + Пирани (например, PENNINGVAC PTR 90) или Пирани + ёмкостный (например, THERMOVAC TTR 101).
Широкодиапазонный вакуумметр ATMION® позволяет измерять давление в диапазоне 13 декад (10-10 mbar до атмосферного давления). Комбинированные датчики с горячим катодом и Пирани обеспечивают надёжное, автоматически управляемое использование вакуумметра.

Тепловой вакуумметр

Теплопроводность является одной из характеристик газа, непосредственно связанной с плотностью частицы. Энергия передаётся газовыми молекулами в результате их соударения, и в зависимости от длины свободного пробега частиц теплопроводность осуществляется с разной эффективностью. В определённой области давления теплопроводность пропорциональна давлению, несмотря на это могут возникнуть помехи, как тепловой поток, тепловое излучение, теплопроводность через контакты и т.д.
Измерительный мост (мост Wheatstone) используется для уравновешивания температуры и позволяет одновременно измерять разность напряжения между определённым индикатором и прилагаемым напряжением накала. Разностное напряжение устанавливается путём сравнения с нулевым пунктом (указан в техническом паспорте датчика). Сравнение с нулевым пунктом необходимо прежде всего для учёта потери тепла через контакты проволоки и теплоизлучения. Как правило, разностное напряжение соответствует напряжению накала, которое необходимо приложить, если давление в установке опускается ниже предела измерения.
Основные преимущества теплового вакуумметра — это широкий диапазон измерений от 10-4 mbar до атмосферного давления и точность измерений ±10 %, которая достаточна для многих применений.

Мембранно-ёмкостный вакуумметр

Мембранно-ёмкостные вакуумметры используются главным образом для измерения давления в области до высокого вакуума и оно не зависит от вида газа. Принцип действия этих вакуумметров основан на измерении эластичной деформации тонкой мембраны под действием разности давлений p1 на одном и p2 на другом конце.
Таким образом, мембранный вакуумметр — это прибор для измерения относительного давления. В объёме датчика создаётся разряжение до давления p2, которое меньше давления p1 в ресивере. Измерение абсолютного давления происходит с незначительными погрешностями, возникающим из-за остаточного давления p2.
В ёмкостных вакуумметрах чувствительная мембрана образует один из электродов конденсатора. Изгиб, выполняющий функцию разностного давления, вызывает изменение его объёма. Это изменение можно непосредственно измерить. Мембраны изготовляются из нержавеющей стали с небольшим коэффициентом теплового расширения или керамики с металлическим покрытием. Керамические мембраны менее чувствительны к перепадам температур и благодаря лучшей способности к релаксации устойчивы по отношению к нулевой точке. Они обладают улучшенной коррозиевоустойчивостью и могут использоваться также в суровых условиях. Мембрана не должна быть чувствительна к при изменении температуры, иначе это приводит к искажению результатов измерений. Диапазон измеряемых давлений зависит от толщины мембраны. Каждая толщина мембраны измеряет давление диапазоном 4 декад.
Увеличение точности можно достичь, используя термостабильные датчики, установленные на постоянную температуру 45гр.C. Тем самым снижается влияние температуры на результаты измерений. Преимущества мембранно-ёмкостного вакуумметра — это газонезависимость, высокая точность измерения (обычно 0,2% от показываемого значения) и стойкость против коррозийных газов

Прижинные манометры, вакуумметры, мановакуумметры : виды и классификация, принцип действия

Манометры, мановакуумметры и вакуумметры данной группы относятся к приборам деформационного типа.

В качестве чувствительного элемента в них используются различные пружины, поэтому они называются пружинными в которых измеряемое избыточное, абсолютное или вакуумметрическое давление уравновешивается силами упругости пружины, степень деформации которой служит мерой давления.

Благодаря простоте и надежности конструкции пружинные приборы получили широчайшее распространение и использование в технологических процессах.

  • Классификация пружинных манометров, вакуумметров, мановакуумметров по виду пружин
  • с трубчатой пружиной;
  • с пластинчатой пружиной;
  • с коробчатой пружиной.
  • Устройство и принципиальная схема приборов с манометрической трубчатой пружиной Бурдона :

  • Устройство и принципиальная схема приборов с пластинчатой пружиной :

  • Устройство и принципиальная схема приборов с коробчатой пружиной :

Пишите

Звоните

(343) 345-28-66

Приезжайте

Ул. Степана Разина, 109

Новости

НОВОСТИ : в каталог контрольно-измерительных приборов добавлены подробные описания мембранных разделителей сред серии РМ :

Описания, цены, назначение, расшифровка маркировки, устройство, работа и принцип действия, технические характеристики, габаритные размеры, масса, опросный лист, рекомендации по монтажу, гидрозаполнению и установке, комплект поставки, образец заказа.

  • Цена производителя!
  • Полные гарантии завода-изготовителя!
  • Скидки!

Сейчас можно заказать и купить приборы и технологическое оборудование гражданского назначения производства ПАО СПЗ в компании ООО Промприбор-66 по ценам не превышающих отпускных цен данного производителя.

Напоромеры, тягомеры, тягонапоромеры, в том числе сигнализирующие и коррозионностойкие, датчики-реле температуры, датчики-реле и индикаторы давления, тахометры, мембранные разделители, позиционеры пневматические и электропневматические, мембранные разделители, фильтры-стабилизаторы!

Поддерживаем полные заводские гарантии завода-изготовителя — ПАО СПЗ, предоставляем скидки в зависимости от объёма заказа!

В каталоге обновлены цены на приборную продукцию производства ОАО Теплоконтроль (г.Сафоново)!

Всю выпускаему номенклатурую КИПиА можно заказать и купить в нашей компании по ценам, не превышающих цен производителя. Гарантии, скидки, бесплатная доставка до филиалов ТК для отгрузки иногородним Заказчикам.

Новости : в каталог контрольно-измерительных приборов добавлены подробные описания регуляторов температуры горячего водоснабжения серии РТ-ГВ :

Описания, цены, назначение, расшифровка маркировки, устройство, работа и принцип действия, технические характеристики, габаритные размеры, масса, опросный лист, схемы подключения, комплект поставки образец заказа.

  • Цена производителя!
  • Полные гарантии завода-изготовителя!
  • Кратчайшие сроки изготовления и отгрузки!
  • Скидки!

Отправить ответ

avatar
  Подписаться  
Уведомление о