ВысокочАстотный трансформатор своими руками



Содержание страницы

Как сделать сварочный инвертор своими руками?

Сварка металлов в газовой среде производится при помощи электрической дуги, которая формируется и поддерживается с помощью специальных сварочных аппаратов. В качестве таких аппаратов можно использовать инвертор. В бытовых условиях можно изготовить сварочный инвертор своими руками.

Схема устройства сварочного инвертора.

Сконструировать и самостоятельно собрать сварочный инвертор достаточно просто. Для этого нужно иметь небольшие знания электротехники и радиодела. Предлагается много разных конструкций аппарата, но принципиально они мало отличаются друг от друга и в основе своей имеют стандартные схемы, с использованием стандартных радиодеталей и электротехнических изделий.

Основные сведения о сварочных инверторах

В общем случае, сварочный инвертор используется как один из основных видов источника электропитания сварочной дуги, главной задачей которого является подача и стабильное поддержание электрического тока, необходимого для зажигания дуги и поддержания ее горения во время всего процесса сварки. Важной характеристикой сварочного инвертора должна стать стабильность выходного тока при колебаниях и помехах в сети.

Функциональная схема источника питания инверторного сварочного аппарата.

Сварочный инвертор — это прежде всего силовой трансформатор, понижающий напряжение электросети до нужного значения напряжения холостого хода. В основу конструирования инверторов заложено свойство высокочастотных трансформаторов, которые имеют массу и размеры, намного меньшие по сравнению с обычными трансформаторами. Все сварочные инверторы основаны на одном главном принципе. Входное напряжение 220 В переменного тока подвергается первичному выпрямлению, путем превращения переменного тока в постоянный, который поступает в инверторный блок.

Инверторный блок обеспечивает трансформацию постоянного напряжения в высокочастотное, которое подается на высокочастотный выпрямитель, обеспечивающий вторичное превращение переменного тока в постоянный. На окончательной стадии используется высокочастотный сварочный аппарат, который достаточно миниатюрен по сравнению с обычными аппаратами для частоты 50 Гц той же мощности. Применение для сварки постоянного тока обеспечивает стабильность дуги и плавное регулирование процесса.

Основные требования

Для обеспечения устойчивости процесса сварки инверторы должны содержать блоки управления, действующие по правилам обратной связи. Сигнал о любых колебаниях и помехах поступает в силовой блок, корректируя величину выдаваемого тока и напряжения.

Таблица требуемых технических характеристик для сварочного инвертора.

Такие блоки, основанные на использовании микропроцессоров, ведут контроль во всех основных блоках инвертора, обеспечивая их стабильность.

Можно рекомендовать некоторые основные параметры, которые следует обеспечить, собирая сварочный инвертор своими руками. Напряжение входной электросети может колебаться в пределах 200-230 В при величине входного тока до 32 А. Сила постоянного тока, подаваемого на электрод, может регулироваться в диапазоне 30-200 А. Мощность в зоне горения дуги должна быть не менее 3,5 кВа

Основная конструкция сварочного инвертора

Резонансная схема является основой типовых конструкций сварочных инверторов. Простой сварочный инвертор имеет следующие основные конструктивные элементы: силовой блок, блок питания, блок защиты, драйвера силовых ключей (блок управления). Важнейшим элементом является силовой блок, обеспечивающий первичное и вторичное выпрямление электрического сигнала и преобразование его в высокочастотный сигнал (до 55 кГц). Блок питания осуществляет стабилизацию и трансформацию до нужной величины напряжения входного сигнала. Блок защиты выполняет функцию защиты от перегрузок и коротких замыканий. Драйверы силовых ключей обеспечивают управление основными элементами силового блока, устраняя влияние помех и побочных факторов.

Необходимый для изготовления инвертора инструмент

Если поставлена задача изготовить сварочный инвертор своими руками, то необходимо заранее подготовить следующий инструмент и оборудование:

Инструменты для изготовления сварочного инвентора.

  • сварочный аппарат;
  • болгарку;
  • дрель;
  • ключи гаечные;
  • отвертку;
  • плоскогубцы;
  • паяльник мощностью не менее 100 Вт;
  • молоток;
  • тиски;
  • штангенциркуль;
  • нож;
  • тестер;
  • осциллограф;
  • амперметр;
  • вольтметр;
  • рулетку.

Изготовление блока питания

Блок питания сварочного инвертора представляет собой стандартную схему обратноходового преобразователя (флайбэка), схема которого широко используется в источниках питания бытовых приборов. Основным элементом блока питания является многообмоточный дроссель (трансформатор). Принцип действия таких блоков основан на двухэтапной работе: первый этап — накопление энергии в первичной обмотке дросселя; второй этап — передача энергии во вторичную цепь, т.е. непосредственное снабжение электроэнергией рабочих блоков. Управление процессом осуществляется с помощью ключей — транзисторов.

Схема дросселя сварочного инвертора.

Трансформатор можно изготовить своими руками. Для этого на сердечник, представляющий собой феррит Ш7х7 или Ш8х8, наматывается одна первичная обмотка и три вторичные. Первичная обмотка изготавливается из провода марки ПЭВ сечением 0,3 мм². Количество витков — 100. Для вторичных обмоток также используется провод марки ПЭВ следующих сечений: первая обмотка — 1 мм², вторая обмотка — 0,2 мм², третья — 0,3 мм². Количество витков составляет 15, 15 и 20 соответственно. Иногда используют четвертую обмотку, которая аналогична по конструкции третьей.

Силовой блок инвертора

Силовой блок сварочного инвертора состоит из первичного выпрямителя, высокочастотного преобразователя, высокочастотного трансформатора и вторичного выпрямителя. В качестве выпрямителей используются диодные мосты необходимой мощности. На первичный выпрямитель подается электрический ток не более 40 А, и мощность диодов не велика. Другая картина на вторичном выпрямителе, где сила тока может достигать 200 А. Здесь очень важно обеспечить надежное охлаждение диодов. Охлаждение осуществляется с помощью охлаждающих радиаторов, увеличивающих площадь теплоотдачи

Электрический сигнал преобразуется в высокочастотный по резонансному методу. Главным элементом преобразователя являются силовые транзисторы, поэтому к его выбору предъявляются особые требования. Прежде всего транзистор выбирается по мощности. При напряжении 220 В и токе 20 А нужен транзистор мощностью не менее 4,6 кВт, а при токе 32 А — не менее 8 кВт. Следующий параметр — рабочее напряжение. Для бытовых аппаратов напряжение может быть 220 или 380 В.

Схема подключения инвертора к аккумулятору.

Следовательно, можно выбрать стандартный транзистор с рабочим напряжением до 400 В. Наконец, по частоте выдаваемого сигнала следует выбирать транзистор, способный обеспечить частоту до 100 кГц. Хорошие показатели в пределах требований для бытовых инверторов имеют транзисторы фирмы IR марки IGBT.

Для стабилизации преобразуемого сигнала используется схема раскачки и управления. Важным элементом является резонансный дроссель. Он изготавливается следующим образом. На сердечник из феррита 2хШ16х20 накладывается обмотка из провода марки ПЭТВ-2 диаметром 2,24 мм. Количество витков -12.

Высокочастотный трансформатор

Высокочастотный трансформатор предназначен для понижения входного электрического напряжения высокой частоты до величины напряжения, подаваемого на электрод. Особенностью передачи высокочастотного сигнала является то, что поток частиц при высокой частоте концентрируется на поверхности проводника. Эта особенность приводит к замене круглого провода в обмотке трансформатора на проводники, имеющие наименьшую толщину при максимальной площади. К таким формам оптимально приближается медная фольга.

Для трансформатора частотой до 55 кГц можно рекомендовать следующую конструкцию. В качестве сердечника используется два комплекта феррита Ш20х28-2000НМ с зазором 0,05 мм, в который прокладывается бумага. Обе обмотки изготавливаются из медной фольги толщиной 0,3 мм.

Первичная обмотка выполняется в виде 9 витков при сечении проводника 10 мм² (ширина фольги 40 мм). Вторичная обмотка наматывается тремя витками при сечении проводника 30 мм² (ширина фольги — 100 мм). Витки фольги изолируются друг от друга в одной обмотке с помощью бумаги. Между обмотками накладывается изоляционный слой из фторопластовой ленты (пленки).

Для стабилизации выходного напряжения используется дроссель.

Он изготавливается на базе сердечника из феррита Ш20х28-2000НМ. Обмотка выполнена в виде 5 витков провода марки ПЭВ сечением 25 мм². На выходе дросселя устанавливается токовый трансформатор, являющийся датчиком для контроля по величине тока. Токовый трансформатор выполнен в виде двух колец К30х18х7: первичной обмоткой является сам провод, протянутый внутри кольца, вторичная обмотка изготавливается из 85 витков медного провода диаметром 0,5 мм.

Блок управления

Схема блока управления (система драйверов) может быть собрана на основе задающего генератора или широкоимпульсного модулятора (ШИМ). Задающий генератор можно собрать на базе микросхемы типа UC3825. Эта микросхема считается одним из лучших драйверов двухтактного типа. Такой драйвер способен обеспечить управление и защиту по току и напряжению, как на входе, так и на выходе.

Одним из главных элементов схемы управления является резонансный дроссель. От того, как он изготовлен, зависит мощность конечного сигнала. Основополагающим параметром является зазор между ферритами. Изменяя зазор в пределах 0,2-0,8 мм, можно добиться максимальной мощности. Заметное влияние на параметры всего аппарата оказывают резонансные конденсаторы. Если применен конденсатор типа К73-16, то таких конденсаторов потребуется 10 штук. При использовании конденсаторов типа 778-2, их необходимо 6 штук.

Генератор высокой частоты – враг электросчетчиков

Высокочастотные генераторы служат для образования колебаний электрического тока в интервале частот от нескольких десятков килогерц до сотен мегагерц. Такие устройства создают с применением контуров колебаний LС или резонаторов на кварцах, которые являются элементами задания частоты. Схемы работы остаются такими же. В некоторых цепях контуры гармонических колебаний заменяются кварцевыми резонаторами.

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Схема прибора

Главные составляющие элементы прибора: выпрямитель, емкость, транзистор. Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.

Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.

Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.

Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.

Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.

Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.

Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.

При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.

В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт. Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме. Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.

При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.

При выключенных потребителях устройство расходует немалую мощность, учитываемую счетчиком. Поэтому лучше выключать этот прибор при отключенной нагрузки.

Принцип работы и конструкция полупроводникового генератора ВЧ

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на биполярных транзисторах из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на полевиках. Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Ламповый генератор ВЧ

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

Усилитель мощности на лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. Цепь накала с питанием низкого напряжения.
  2. Цепь возбуждения и питания сетки управления.
  3. Цепь питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Высокочастотный трансформатор своими руками

Трансформатор Тр2 можно намотать на ферритовом кольце, на Ш – образном сердечнике или на сердечнике другой формы.

Сердечник трансформатора подбирается по требуемой мощности на выходе инвертора.

Есть много различных формул и разных программ по расчету ферритовых трансформаторов для импульсных источников питания. Я перепробовал различные способы расчета ферритовых трансформаторов. Не буду вдаваться в их достоинства и недостатки. Каждый выбирает свой вариант расчета ферритового сердечника для импульсного блока питания.

Вот некоторые мои рассуждения по этому поводу.
Во первых: рекомендуемые к использованию, в результате расчетов, ферритовые сердечники (кольца, Ш-образные, броневые) не всегда имеются в наличии в торговых точках.
Во вторых: тот ферритовый магнитопровод, что мы можем достать, как правило, не имеет никаких обозначений на корпусе о его магнитной проницаемости.
Вот и получается, что все с таким трудом проведенные выкладки и расчеты количества витков в обмотках ферритового трансформатора, из за неопределенности в магнитной проницаемости феррита, теряют ценность.

Я подошел к подбору выходного ферритового трансформатора с чисто практической стороны.
Из технической литературы приведу таблицу ферритовых колец для использования в качестве высокочастотный трансформаторов.
В этой таблице дан размер магнитопровода, его поперечное сечение по сердечнику, размер окна.
Произведение площадей, сечения магнитопровода и окна, дает возможность определить его габаритную мощность на частоте в 20 килогерц.
На другой частоте соответственно и мощности будут другие.
Ферритовые сердечники будут работать и на более высокой частоте, но увеличатся потери в магнитопроводе и КПД трансформатора уменьшится. Но ничего, для нашего случая частота автогенератора не превысит 45 — 50 КГц, это нормально.
В нашем случае нужно подобрать ферритовый сердечник на мощность свыше 20 ватт. У меня есть ферритовое кольцо снятое со старой аппаратуры вполне подходящее под наш случай. Его размер: К28×18х8 (наружний диаметр 28, внутренний 18, толщина 8 мм.).
По таблице его габаритная мощность свыше 200 ватт, что более чем достаточно для данного устройства. Не нужно стремиться брать ферритовое кольцо меньших размеров, это якобы уменьшает габариты устройства. Ничего подобного.
Чем больше окно кольца, тем удобнее расположить в нем витки и не нужно стеснять себя в диаметре провода. Чем больше диаметр провода в первичной и вторичной обмоток, тем меньше потерь в проводах и стабильнее выходное напряжение. К тому же, с увеличением сечения магнитопровода, уменьшается количество витков на вольт, то есть будет меньше витков во всех обмотках.
Количество витков на 1 вольт у ферритового трансформатора зависит от сечения сердечника магнитопровода.
Известная формула для определения количества витков на вольт при расчете обмоток трансформатора изготовленного из стальных листов и работающего на частоте 50 герц:
n = 50 /S
Где: n – количество витков на вольт;
S – площадь поперечного сечения сердечника в см. кв.

Для расчета количества витков на вольт ферритового трансформатора на частоты свыше 20 килогерц, я применяю немного видоизмененную формулу:

n = 0,7 / S;
где: S – площадь поперечного сечения ферритового сердечника в см. кв.
Площадь поперечного сечения выбранного нами кольца К28×18х 8 будет:
S = (D — d) / 2 x l = (28 — 18) / 2 x 8 = 10 / 2 x 8 = 40 мм. кв. или 0,4 см. кв. .
Количество витков на 1 вольт выбранного мной ферритового магнитопровода:
n = 0,7 / S = 0,7 / 0,4 = 1,75 витка на 1 вольт.

Тогда количество витков первичной обмотки трансформатора Тр2 будет:
w1 = n x U1 = 1,75 х 145 = 253,75 витка. Примем 254 витка.
Диаметр провода 0,25 — 0,35 мм. Чем больше диаметр провода, тем мощнее будет ИБП, но все должно быть в разумных пределах.
Вторичная обмотка состоит из двух полуобмоток w2-1 и w2-2, каждая из которых рассчитана на полное выходное напряжение.
Количество витков в каждой вторичной полуобмотке:
w2-1 = w2-2 = n x U2 = 1,75 х 15 = 26,25 витка.
С учетом падения напряжения на диодах Д9, Д10 количество витков во вторичной обмотке примем: w2-1 = w2-2 = 28 витков. Диаметр провода 0,6 — 0,7 мм.
Напряжение обратной связи в обмотке w3 должно быть достаточным для работы генератора. Для трансформатора Тр1 оно должно быть 6,5 вольт.
Количество витков в обмотке связи w3 = n x 6,5 = 1,75 x 6,5 = 11,3 витка. Примем: w3 = 12 витков. Диаметр провода 0,3 мм.
Трансформатор Тр2 будем мотать на ферритовом кольце по схеме приведенной на рисунке.

На рисунке показана последовательность намотки ферритового трансформатора.

Ферритовое кольцо (рис. а) необходимо обмотать лакотканью или лучше фторопластовой лентой (рис. б).
Поверх мотается первичная обмотка w1. На начало и конец провода, для жесткости, надевается хлорвиниловая трубочка и провод вместе с трубочкой закрепляется нитками.
Витки обмотки необходимо равномерно распределить по всей длине кольца (рис.в).
Для этого нужно заранее поверхность кольца разделить на секторы. Например на четыре сектора. Тогда в каждом секторе будет по 254 витка / 4 = 63,5 витков. Равномерно и последовательно намотав один сектор, переходим ко второму, еще 63,5 витка и т.д.

Идеальный случай, это намотать обмотку виток к витку, что вряд ли получится.
Начало и конец проводов обмотки не должны касаться друг друга, между ними надо сохранить промежуток в 2-3 мм. Это делается для избежания пробоя между витками начала и конца первичной обмотки.
Намотка на кольцо производится с помощью самодельного челнока, который можно изготовить из медной проволоки, по форме как на рисунке.

Предварительно рассчитав необходимую длину провода (количество витков в обмотке умноженное на длину одного витка, плюс длину выводов) с небольшим запасом, наматываем на челнок. Закрепляем начало провода обмотки , провод вместе с трубочкой, нитками на кольце и мотаем при помощи челнока. При намотке провода на кольцо необходимо следить, чтобы провод не скручивался и не образовывались «барашки». Нужно запастись большим терпением и тогда все получится.
Сначала процедура намотки кольца будет проходить с трудом, но по мере накопления опыта, работа ускорится.
Поверхность намотанной первичной обмотки w1 необходимо обмотать лентой шириной 8 — 10 мм. из лакоткани или лучше фторопласта (рис. г).
Далее мотается вторичная обмотка w2. Две полуобмотки w2-1 и w2-2 мотаются одновременно двумя проводами.
Нужно определить длину каждого провода для w2-1 и w2-2. Предварительно измеряется длина одного витка, а затем умножается на количество витков, плюс 10 сантиметров на длину выводов, плюс запас 20 см.
Провод для вторичной обмотки толстый и мотается без челнока, одновременно двумя проводами. Начала двух проводов закрепляются нитками, а затем виток за витком, двумя проводами продеваются в кольцо. Между началами и концами вторичных полуобмоток нужно оставить на кольце свободным расстояние 5-6 мм. В этот зазор разместить витки обмотки w3
Нужно стараться меньше гнуть провода и чтобы они оба не переплетались между собой.
Необходимо так же равномерно распределить количество витков вторичной обмотки по всему кольцу, т.е. разбить количество витков на четыре сектора, как и в случае первичной обмотки. Необходимо мотать так, чтобы намотка уложилась в один ряд по всей длине, как на рисунке д).
Конец одной полуобмотки (w2-1) спаять с началом другой полуобмотки (w2-2). Получится полная обмотка w2 с выводом посередине (рис. д).
Обмотка обратной связи w3 мотается на первичную обмотку в одном слое с вторичной w2. Мотать ее поверх обмотки w2 нельзя, так как это может повлиять на режим автогенерации.

Схема катушки трансформатора Никола Тесла на 220 В

Работа кинескопных телевизоров, люминесцентных и энергосберегающих лампочек, дистанционная зарядка аккумуляторов обеспечивается специальным устройством — трансформатором (катушкой) Тесла. Для создания эффектных световых зарядов фиолетового цвета, напоминающих молнию, также применяется катушка Тесла. Схема на 220 В позволяет понять устройство этого прибора и при необходимости сделать его своими руками.

Механизм работы

Катушка Тесла представляет собой электроаппарат, способный в несколько раз увеличивать напряжение и токовую частоту. Во время её работы образуется магнитное поле, которое может влиять на электротехнику и состояние человека. Попадающие в воздух разряды способствуют выделению озона. Конструкция трансформатора состоит из следующих элементов:

  • Первичной катушки. Имеет в среднем 5−7 витков провода с диаметром сечения не меньше 6 мм².
  • Вторичной катушки. Состоит из 70−100 витков диэлектрика с диаметром не более 0,3 мм.
  • Конденсатора.
  • Разрядника.
  • Излучателя искрового свечения.

Трансформатор, созданный и запатентованный Николой Тесла в 1896 году, не имеет ферросплавов, которые в других аналогичных приборах используются для сердечников. Мощность катушки ограничивается электрической прочностью воздуха и не зависит от мощности источника напряжения.

При попадании напряжения на первичный контур на нём генерируются высокочастотные колебания. Благодаря им на вторичной катушке возникают резонансные колебания, результатом которых является электрический ток, характеризующийся большим напряжением и высокой частотой. Прохождение этого тока через воздух приводит к возникновению стримера — фиолетового разряда, напоминающего молнию.

Колебания контуров, возникающие в процессе работы катушки Тесла, могут быть сгенерированы разными способами. Чаще всего это происходит с помощью разрядника, лампы или транзистора. Наиболее мощными являются устройства, в которых используются генераторы двойного резонанса.

Исходные материалы

Человеку, обладающему основными знаниями в области физики и электрики, собрать трансформатор Тесла своими руками не составит труда. Необходимо лишь приготовить набор основных деталей:

  • Источник питания с напряжением порядка 9−12 Вольт. Роль такого источника в самодельном устройстве может выполнять аккумулятор автомобиля, батарея для ноутбука либо понижающий трансформатор с диодным мостом для генерации постоянного тока.
  • Первичный контур. Состоит из двух резисторов с номинальным сопротивлением 50 и 75 кОм, транзистора VT1 D13007 или аналогичного прибора, имеющего n-p-n cтpyктypу.

Обязательным элементом первичной катушки является охлаждающий радиатор, размер которого напрямую влияет на эффективность охлаждения оборудования. В качестве обмотки может быть использована трубка из меди или провод диаметром 5−10 мм.

Для вторичной обмотки рекомендуется использовать кабель с сечением от 0,1 до 0,3 мм², намотанный на диэлектрическую трубку из поливинилхлорида. Оптимальной считается длина трубки 25−40 см и диаметр порядка 3−5 см.

Вторичная катушка требует обязательной изоляции в виде обработки краской, лаком или другим диэлектриком. Дополнительной деталью этого контура является последовательно подключённый терминал. Его использование целесообразно только при мощных разрядах, при небольших стримерах достаточно вывести конец обмотки вверх на 0,5−5 см.

Схема подключения

Трансформатор Тесла собирается и подключается в соответствии с электрической схемой. Монтаж маломощного устройства следует проводить в несколько этапов:

  1. Установить источник питания с чётким соблюдением соответствия контактов.
  2. Прикрепить радиатор к транзистору.
  3. Собрать электрическую схему, используя фанеру, деревянную коробку или кусок пластика в качестве диэлектрической подложки.
  4. Изолировать катушку от схемы пластиной диэлектрика, имеющей отверстия для подключения проводов.
  5. Установить первичную обмотку, исключив её падение и соприкосновение с другой обмоткой. В центре предусмотреть отверстие для вторичной катушки, обеспечив расстояние между ними не менее 1 см.
  6. Закрепить вторичную обмотку, осуществить необходимые соединения, руководствуясь схемой.

Сборка более мощного трансформатора происходит по аналогичной схеме. Чтобы добиться большой мощности, потребуется:

  • Увеличить размеры катушек и сечения обмоток в 1,1−2,5 раза.
  • Установить источник переменного тока с напряжением 3−5 кВт.
  • Добавить терминал в виде тороида.
  • Обеспечить хорошее заземление.

Максимальная мощность, которую может достигать правильно собранный трансформатор Тесла, доходит до 4,5 кВт. Такой показатель может быть достигнут с помощью уравнивания частот обоих контуров.

Собранную своими руками катушку Тесла обязательно необходимо проверить. Во время проверочного подключения следует:

  1. Установить переменный резистор в среднюю позицию.
  2. Отследить наличие разряда. При его отсутствии нужно поднести к катушке люминесцентную лампу или лампу накаливания. Её свечение будет свидетельствовать о наличии электромагнитного поля и о работоспособности трансформатора. Также исправность прибора можно определить по самостоятельно зажигающимся радиолампам и вспышкам на конце излучателя.

Первый запуск прибора должен осуществляться при отслеживании температуры. При сильном нагревании требуется подключить дополнительное охлаждение.

Применение трансформатора

Катушка может создавать разные виды зарядов. Чаще всего при её работе возникает заряд в форме дуги.

Свечение воздушных ионов в электрическом поле с повышенным напряжением называют коронным разрядом. Он представляет собой голубоватое излучение, образующееся вокруг деталей катушки, имеющих значительную кривизну поверхности.

Искровой разряд или спарк проходит от терминала трансформатора до поверхности земли либо до заземлённого предмета в виде пучка быстро меняющих форму и гаснущих ярких полос.

Стример выглядит как тонкий слабо светящийся световой канал, имеющий множество разветвлений и состоящий из свободных электронов и ионизированных частиц газа, не уходящих в землю, а протекающих по воздуху.

Создание разного рода электроразрядов при помощи катушки Тесла происходит при большом увеличении тока и энергии, вызывающем треск. Расширение каналов некоторых разрядов провоцирует увеличение давления и образование ударной волны. Совокупность ударных волн по звуку напоминает треск искр при горении пламени.

Эффект от трансформатора такого рода ранее использовали в медицине для лечения заболеваний. Высокочастотный ток, протекая по коже человека, давал оздоровительный и тонизирующий эффект. Он оказывался полезным только при условии невысокой мощности. При возрастании мощности до больших значений получался обратный результат, негативно влияющий на организм.

С помощью такого электроприбора разжигают газоразрядные лампы и обнаруживают течь в вакуумном пространстве. Также его успешно применяют в военной сфере с целью быстрого уничтожения электрооборудования на кораблях, танках или в зданиях. Мощный импульс, генерируемый катушкой за очень короткий период, выводит из строя микросхемы, транзисторы и прочие аппараты, находящиеся в радиусе десятков метров. Процесс уничтожения техники происходит бесшумно.

Самой зрелищной сферой применения являются показательные световые шоу. Все эффекты создаются благодаря формированию мощных воздушных зарядов, длина которых измеряется несколькими метрами. Это свойство позволяет широко применять трансформатор при съёмках фильмов и создании компьютерных игр.

При разработке этого устройства Никола Тесла планировал использовать его для передачи энергии в глобальном масштабе. Идея учёного базировалась на применении двух сильных трансформаторов, располагающихся на разных концах Земли и функционирующих с равной резонансной частотой.

В случае успешного использования такой системы энергопередачи необходимость в электростанциях, медных кабелях и поставщиках электричества полностью бы отпала. Каждый житель планеты смог бы использовать электроэнергию в любом месте абсолютно безвозмездно. Однако в силу экономической нерентабельности замысел знаменитого физика до сих пор не был (и вряд ли когда-то будет) реализован.

Сделай сам своими руками О бюджетном решении технических, и не только, задач.

Как рассчитать и намотать силовой низкочастотный трансформатор для блока питания УНЧ? FAQ Часть 1

Эта тема возникла в связи с написанием статьи о самодельном усилителе низкой частоты. Хотел продолжить повествование, рассказав о блоке питания и добавив ссылку на какую-нибудь популярную статью о перемотке трансформаторов, но не нашёл простого понятного описания. Что ж поделаешь, всё нужно делать самому. https://oldoctober.com/

В этом опусе я расскажу, на примере своей конструкции, как рассчитать и намотать силовой трансформатор для УНЧ. Все расчёты сделаны по упрощённой методике, так как в подавляющем большинстве случаев, радиолюбители используют уже готовые трансформаторы. Статья рассчитана на начинающих радиолюбителей.

Самые интересные ролики на Youtube

Те же, кто хочет углубиться в расчёты, может скачать очень хорошую книжку с примерами полного расчёта трансформатора, ссылка на которую есть в конце статьи. Также в конце статьи есть ссылка на несколько программ для расчёта трансформаторов.

Страницы 1 2 3 4

Как определить необходимую мощность силового трансформатора для питания УНЧ?

Для колонок описанных здесь, я решил собрать простой усилитель мощностью 8-10 Ватт в канале, на самых дешёвых микросхемах, которые только удалось найти на местном радиорынке. Ими оказались – TDA2030 ценой всего по 0,38$.

Предполагаемая мощность в нагрузке должна составить 8-10 Ватт в канале:

10 * 2 = 20W

КПД микросхемы TDA2030 по даташиту (datasheet) – 65%.

20 / 0,65 = 31W

Я подобрал трансформатор с витым броневым магнитопроводом, так что, КПД можно принять равным – 90%. https://oldoctober.com/

31 / 0,9 = 34W

Приблизительно оценить КПД трансформатора можно по таблице.

Значит, понадобится сетевой трансформатор мощностью около 30-40 Ватт. Такой трансформатор должен весить около килограмма или чуть больше, что, на мой взгляд, прибавит моему мини усилителю устойчивости и он не будет «бегать» за шнурами.

Если мощность трансформатора больше требуемой, то это всегда хорошо. У более мощных трансформаторов выше КПД. Например, трансформатор мощностью 3-5 Ватт может иметь КПД всего 50%, в то время как у трансформаторов мощностью 50–100 Ватт КПД обычно около 90%.

Итак, с мощностью трансформатора вроде всё более или менее ясно.

Теперь нужно определиться с выходным напряжением трансформатора.

Какую схему питания УНЧ выбрать?

Для питания микросхемы, я решил использовать двухполярное питание.

При двухполярном питании не требуется бороться с фоном и щелчками при включении. Кроме того, отпадает необходимость в разделительных конденсаторах на выходе усилителя.

Ну, и самое главное, микросхемы, рассчитанные на однополярное питание и имеющие соизмеримый уровень искажений, в несколько раз дороже.

Это схема блока питания. В нём применён двухполярный двухполупериодный выпрямитель, которому требуются трансформатор с двумя совершенно одинаковыми обмотками «III» и «IV» соединёнными последовательно. Далее все основные расчёты будут вестись только для одной из этих обмоток.

Обмотка «II» предназначена для питания электронных регуляторов громкости, тембра и стереобазы, собранных на микросхеме TDA1524. Думаю описать темброблок в одной из будущих статей.

Ток, протекающий через обмотку «II» будет крайне мал, так как микросхема TDA1524 при напряжении питания 8,5 Вольта потребляет ток всего 35мА. Так что потребление здесь ожидается менее одного Ватта и на общей картине сильно не отразится.

Расчёт выходного напряжения (переменного тока) трансформатора работающего на холостом ходу или без существенной нагрузки.

Этот расчёт необходимо сделать, чтобы обезопасить микросхему от пробоя.

Максимальное допустимое напряжение питания TDA2030 – ±18 Вольт постоянного тока.

Для переменного тока, это будет:

18 / 1,41 ≈ 12,8 V

Падение напряжения на диоде* выпрямителя при незначительной нагрузке – 0,6 V.

12,8 + 0,6 = 13,4 V

* Схема применённого выпрямителя построена так, что протекающий в любом направлении ток создаёт падение напряжения только на одном из диодов. При использовании одной вторичной обмотки и мостового выпрямителя, таких диодов будет два.

При повышении напряжения сети, напряжение на выходе выпрямителя увеличится. По нормативам, напряжение сети должно быть в пределах – -10… +5% от 220-ти Вольт.

Уменьшаем напряжение на вторичной обмотке трансформатора для компенсации повышения напряжения сети на 5%.

13,4 * 0.95 ≈ 12,7 V

Мы получили значение максимального допустимого напряжения переменного тока на вторичной обмотке трансформатора при питании микросхемы TDA2030 от двухполярного источника без стабилизации напряжения.

Проще говоря, это чтобы напряжение не вылезло за пределы ±18V и не спалило микруху.

Те же значения для этой линейки микросхем.

Расчёт напряжения (постоянного тока) на выходе блока питания работающего при максимальной нагрузке.

Этот расчёт необходимо сделать, чтобы оценить максимальную мощность на нагрузке и ограничить её путём снижения напряжения, если она выйдет за допустимые пределы для данного типа микросхемы или нагрузки.

Под нагрузкой напряжение переменного тока на вторичной обмотке понижающего трансформатора может уменьшиться.

12,7 * 0.9 ≈ 11,4V

Падение напряжения на диоде* выпрямителя резко возрастёт под нагрузкой и может достигнуть, в зависимости от типа диода, – 0.8… 1,5V.

11,4 – 1,5 = 9,9V

* Схема применённого выпрямителя построена так, что протекающий в любом направлении ток создаёт падение напряжения только на одном из диодов. При использовании одной вторичной обмотки и мостового выпрямителя, таких диодов будет два.

После выпрямителя получаем на конденсаторе фильтра напряжение постоянного тока:

9,9 * 1,41 ≈ 14V

Но, под нагрузкой, конденсатор не будет успевать заряжаться до максимально возможного напряжения. Поэтому, и в этом случае, исходное напряжение увеличивают на 10%.

14 * 0.9 = 12,6V

В реальности, действующее напряжение может быть и выше, а 12,6 Вольта, это тот уровень, на котором предположительно возникнет ограничение аудио сигнала. На картинке изображён эпюр напряжения на нагрузке, снятый при воспроизведении частоты синусоидального сигнала. Сигнал ограничен напряжением питания УНЧ.

При ограничении сигнала возникают сильные искажения, которые фактически и ограничивают выходную мощность УНЧ.

По даташиту, при напряжении питания ±12,6 Вольта и нагрузке 4 Ω, микросхема TDA2030 развивает синусоидальную мощность 9 Ватт. Этой мощности вполне хватит для моих скромных колонок и она не выйдет за пределы допуска для TDA2030.

Выходная мощность микросхем этой серии на нагрузке 4 Ω при использовании нестабилизированного блока питания с максимальным допустимым напряжением.

Получив необходимые исходные данные, можно приступать к перемотке трансформатора.

Страницы 1 2 3 4

Комментарии (47)

Страниц: « 1 2 3 4 [5] Показать все

По поводу главы «Как намотать трансформатор?» счётчик не всегда есть под рукой и в продаже,можно и использовать идею одного автора который вместо счетчика применил старый калькулятор как в статье http://datagor.ru/practice/diy-tech/page,1,1,862-stanok-dlja-namotki-transformatorov-i-katushek.html в «Счётчик витков»,что приводит к минимуму деталей ,и конечно вместо геркона с магнитом можно ставить обычную кнопку и болт на оси на вашем валу который будет выполнять нажатие на кнопку )

У меня возникли несколько вопров к автору.
Вопрос 1:
При двухкаркасной намотке на витом разрезном сердечнике какое правильное направление намотки бобин будет? Как в ТОРах,в одном направлений по магнитопроводу?
Вопрос 2:
Если я достал например витой разрезной 100Ватный магнитопровод,но мне нужен 50Ватник,то как мне рассчитывать обмотки на 50Ватник или на 100Ватник?
Вопрос 3:
Если есть подозрение в изоляций провода(наример мелкие трещинки и т.д.) то чем мне лучше пропитывать слои?И по поводу плотной бумаги для изоляций,можно ли применить обычную мелованную офисную бумагу и какой плотности?
Вопрос 4:
Если нет для изоляций обмоток лакоткани,что можно применить вместо неё из доступных материалов,например ФУМлента,тряпочная изолента и т.д.?
Вопрос 5:
В витых разрезных сердечниках в местах соединения иногда закрепляют какой то гадостью,чем можно прочистить,так же и касается ржавчины.Потом после сборки чем крепить(заливать) места соединения(если это нужно).

Рюмкин

1. Безразлично, если потом фазировать обмотки. Но, если не желаете фазировать, то нужно пометить начало каждой обмотки и мотать их все в одну сторону.

2. При расчёте количества витков имеет значение только габаритная мощность или индукция мангитопровода (но эти параметры взаимосвязаны). А вот сечение провода обмоток определяет, какую мощность сможет передать трансформатор через ту или иную обмотку. В вашем случае, можно уменьшить сечение провода по сравнению со 100-ваттным трансформатором.

3. При намотке обычных понижающих силовых трансформаторов иногда используют прокладки из папиросной бумаги. Но, делают это, либо при бескаркасной намотке, либо при намотке высоконадёжных трансформаторов, например, для военной техники. Почему папиросной? Чтобы сэкономить место в окне могнитопровода. Окно ведь вырубают исходя из габаритной мощности железа и часто бывает, что запаса на прокладки там нет. Но, между первичными и вторичными обмотками, прокладка должна быть обязательно. Достаточно двух слоёв любой плотной бумаги (0,1… 0,15мм). Нужно следить, чтобы витки вторички не провалились с краю этой прокладки и не коснулись витков первички.

4. ФУМ-ка – не годится, так как слишком пластина и со временем может прорезаться проводом. Киперная лента (х/б) иногда используется в качестве изоляции при намотке обмоток на крупные кольцевые (тороидальные) магнитопроводы. Лакоткань – самый удобный материал, используемый при намотке кольцевых магнитопроводов. При намотке обычных трансов, поверх последней обмотки наматывают полтора слоя плотной бумаги, на которую наносят информацию об обмотках. Если поверх этой бумаги намотать полтора витка лакоткани, то трансформатор приобретёт законченный и вполне промышленный вид.

«Если после разборки магнитопровода, на нём остались остатки старой эпоксидной смолы, то их можно удалить при помощи самой мелкой наждачной шкурки (нулёвки).» я понял,но там не написано есть ли необходимость потом выполнить заливку соединений эпоксидкой после окончательной сборки или так ржаветь оставить?
По поводу второго вашего ответа я так понял что на стоваттку можно мотать 50ватку без последствий типа нагрев и т.д. и изменений стандартных расчётов?
Но так как вы не ответили полностью на один из моих вопросов я переспрошу:Вопрос 3:
Если есть подозрение в изоляций провода(наример мелкие трещинки и т.д.) то чем мне лучше пропитывать слои?Например Эпоксидкой разбавленной ацетоном, про шеллак скажу что его достать надо ещё,но некоторые говорят что шеллак со спиртом аналогичен французкому полиролю French Polish? http://www.lacom.ru/rustins/french_polish.php или у вас есть совет получше?
И по поводу бумаги,если допустим возникнет необходимость изолировать слои то папиросную бумагу или допустим плотную бумагу (0,1… 0,15мм), во сколько слоёв нужно ложить?Мне кажется что плотную бумагу (0,1… 0,15мм) ложить в один слой с нахлестом,а папиросную как?
больше вопросов нет.

Да и ещё вот немного дополнил к предыдущему посту, я на днях в библиотеку за справочником ходил,время оставалось и я почитал там старую подборку журналов.Оказывается есть ещё один вид переделаного трансформатора что уменьшает его высоту и увеличивает площадь окон вдвое что весьма существенно при «невлезаний»обмоток когда вместо расчитанного провода применяется провода потолще.Это смотрите в РАДИО 1992 №2-3 стр.65.Я посчитал что средняя перегородка вообще излишняя,и подумал а что если пластины промазать эпоксидкой и склеить половинки отдельно через скажем струбцинчики(тут нужна точность и рукастость) а торцы стыка удалить от эпоксидки по вашему методу.Получится нечто похожее на витой разрезной экономичный.И я по изложенной статье сделал расчёты по штамповке,и что то у меня не сходится с указанной первичкой в статье 4400витков.У меня выходило от3257до3850 витков,про диаметр я вообще молчу.Что то здесь не так,может я неправильно расчитал или это уже считать витым разреным.Вы как специалист может подскажете?

Рюмкин

Если не склеить половинки магнитопровода эпоксидной смолой, то велика вероятность, что трансформатор будет сильно гудеть (резонировать на 50-ти Герцах). Склейку нужно производить, когда всё изделие готово и исправно работает. Вдруг, во время испытаний изделия выясниться, что нужно отмотать или домотать какую-либо обмотку.

…стоваттку можно мотать 50ватку…

Нужно рассчитать каждую обмотку с учётом потребляемой мощности. Первичную нужно рассчитывать более чем на 50-т Ватт с учётом КПД конкретного транса. В данном случае, КПД будет выше, так как можно исходить из габаритной можности, а она у нас 100 Ватт.

…например мелкие трещинки…

Если Вы мотаете виток к витку, то трещинки в лаковом покрытии не мешают, так как между соседними витками и даже витками соседних слоёв напряжение невелико. Но, если сколоты значительные участки лака, то может произойти, так наз., межвитковое замыкание. И от этого никакая пропитка не спасёт.

В качестве ремонтопригодной пропитки можно использовать стеарин, парафин, воск или смеси этих веществ. Делается это так. Берёте консервную банку подходящего размера и бросаете туда несколько, нарезанных на части, самых дешёвых толстых свечек, купленных в хоз. товарах. Затем, эту банку кладёте в кастрюлю с водой и доводите воду до кипения. Когда стеарин растает, опускаете туда готовую и испытанную катушку вместе с бобышкой (имеется в виду бескаркасная намотка). Выдерживаете какое-то время, чтобы стеарин проник в щели. Вынимаете катушку, остужаете и только потом выбиваете бобышку.

Папиросную или другую бумагу, используемую как межслоевую прокладку, кладут в один слой внахлёст. Участок прокладки намотанной вахлёст располагают так, чтобы он не попал в окно будущего магнитопровода. Это позволяет сэкономить немного места.

Если я говорю, что можно обойтись без межслоевых прокладок, то это не значит, что не нужно изолировать выводы обмоток. Выводы и отводы обмоток располагаются перпендикулярно виткам обмотки, что создаёт дополнительно давление на лаковое покрытие.

Ответ на Ваш последний пост в форуме.

Дальнейшее обсуждение статьи и ответы на вопросы перенесены в форум. Для перехода в соответствующую тему воспользуйтесь, пожалуйста, ссылкой.

Страниц: « 1 2 3 4 [5] Показать все

Отправить ответ

avatar
  Подписаться  
Уведомление о