Наружная мембрана



Содержание страницы

Какие функции выполняет наружная клеточная мембрана? Строение наружной клеточной мембраны

Изучением строения клеток прокариотических организмов, а также растений животных и человека занимается раздел биологии, называемый цитологией. Ученые установили, что содержимое клетки, которое находится внутри нее, построено довольно сложно. Его окружает так называемый поверхностный аппарат, в состав которого входят наружная клеточная мембрана, надмембранные структуры: гликокаликс и клеточная стенка, а также микронити, пеликула и микротрубочки, образующие её подмембранный комплекс.

В данной статье мы изучим строение и функции наружной клеточной мембраны, входящей в поверхностный аппарат различных видов клеток.

Какие функции выполняет наружная клеточная мембрана

Как было описано ранее, наружная мембрана является частью поверхностного аппарата каждой клетки, который успешно отделяет ее внутреннее содержимое и защищает клеточные органеллы от неблагоприятных условий внешней среды. Еще одна функция — это обеспечение обмена веществ между клеточным содержимым и тканевой жидкостью, поэтому наружная клеточная мембрана осуществляет транспорт молекул и ионов, поступающих в цитоплазму, а также помогает удалять шлаки и избыток токсичных веществ из клетки.

Строение клеточной мембраны

Мембраны, или плазмалеммы различных типов клеток сильно отличаются между собой. Главным образом, химическим строением, а также относительным содержанием в них липидов, гликопротеидов, белков и, соответственно, характером рецепторов, находящихся в них. Наружная клеточная мембрана, строение и функции которой определяются прежде всего индивидуальным составом гликопротеидов, берет участие в распознавании раздражителей внешней среды и в реакциях самой клетки на их действия. С белками и гликолипидами клеточных мембран могут взаимодействовать некоторые виды вирусов, вследствие чего они проникают в клетку. Вирусы герпеса и гриппа могут использовать плазмалемму клетки-хозяина для построения свой защитной оболочки.

А вирусы и бактерии, так называемые бактериофаги, прикрепляются к мембране клетки и в месте контакта растворяют ее с помощью особого фермента. Затем в образовавшееся отверстие проходит молекула вирусной ДНК.

Особенности строения плазмалеммы эукариот

Напомним, что наружная клеточная мембрана выполняет функцию транспорта, то есть переноса веществ в цитоплазму клетки и из нее во внешнюю среду. Для осуществления такого процесса необходимо специальное строение. Действительно, плазмалемма представляет собой постоянную, универсальную для всех эукариотических клеток систему поверхностного аппарата. Это тоненькая (2-10 Нм), но достаточно плотная многослойная пленка, которая покрывает всю клетку. Её строение было изучено в 1972 году такими учеными, как Д. Сингер и Г. Николсон, ими же создана жидкостно-мозаичная модель клеточной мембраны.

Главные химические соединения, которые её образуют — это упорядоченно расположенные молекулы белков и определенных фосфолипидов, которые вкраплены в жидковатую липидную среду и напоминают мозаику. Таким образом, клеточная мембрана состоит из двух слоев липидов, неполярные гидрофобные «хвосты» которых находятся внутри мембраны, а полярные гидрофильные головки обращены к цитоплазме клетки и к межклеточной жидкости.

Слой липидов пронизывается крупными белковыми молекулами, образующими гидрофильные поры. Именно через них транспортируются водные растворы глюкозы и минеральных солей. Некоторые белковые молекулы находятся как на внешней, так и на внутренней поверхности плазмалеммы. Таким образом, на наружной клеточной мембране в клетках всех организмов, имеющих ядра, находятся молекулы углеводов, связанные ковалентными связями с гликолипидами и гликопротеидами. Содержание углеводов в клеточных мембранах колеблется от 2 до 10%.

Строение плазмалеммы прокариотических организмов

Наружная клеточная мембрана у прокариот выполняет сходные функции с плазмалеммами клеток ядерных организмов, а именно: восприятие и передача информации, поступающей из внешней среды, транспорт ионов и растворов в клетку и из нее, защита цитоплазмы от чужеродных реагентов извне. Она может образовывать мезосомы – структуры, возникающие при впячивании плазмалеммы внутрь клетки. На них могут находиться ферменты, участвующие в метаболических реакциях прокариот, например, в репликации ДНК, синтезе белков.

Мезосомы также содержат окислительно-восстановительные ферменты, а у фотосинтетиков находятся бактериохлорофилл (у бактерий) и фикобилин (у цианобактерий).

Роль наружных мембран в межклеточных контактах

Продолжая отвечать на вопрос, какие функции выполняет наружная клеточная мембрана, остановимся на ее роли в межклеточных контактах. У растительных клеток в стенках наружной клеточной мембраны образуются поры, переходящие в целлюлозный слой. Через них возможен выход цитоплазмы клетки наружу, такие тонкие каналы называют плазмодесмами.

Благодаря им связь между соседними растительными клетками очень прочная. У клеток человека и животных места контактов соседних клеточных мембран называются десмосомами. Они характерны для эндотелиальных и эпителиальных клеток, а также встречаются у кардиомиоцитов.

Вспомогательные образования плазмалеммы

Разобраться, чем отличаются растительные клетки от животных, помогает изучение особенностей строения их плазмалемм, которые зависят от того, какие функции выполняет наружная клеточная мембрана. Над ней у животных клеток находится слой гликокаликс. Он образован молекулами полисахаридов, связанных с белками и липидами наружной клеточной мембраны. Благодаря гликокаликсу между клетками возникает адгезия (слипание), приводящая к образованию тканей, поэтому он принимает участие в сигнальной функции плазмалеммы – распознавании раздражителей внешней среды.

Как осуществляется пассивный транспорт определенных веществ через клеточные мембраны

Как было уже сказано ранее, наружная клеточная мембрана участвует в процессе транспортировки веществ между клеткой и внешней средой. Существует два вида переноса через плазмалемму: пассивный (дифузионный) и активный транспорт. К первому относится диффузия, облегченная диффузия и осмос. Движение веществ по градиенту концентрации зависит, прежде всего, от массы и величины молекул, проходящих через клеточную мембрану. Например, мелкие неполярные молекулы легко растворяются в среднем липидном слое плазмалеммы, продвигаются через нее и оказываются в цитоплазме.

Крупные молекулы органических веществ проникают в цитоплазму с помощью специальных белков-переносчиков. Они имеют видовую специфичность и, соединяясь с частицей или ионом, без затрат энергии пассивно переносят их через мембрану по градиенту концентрации (пассивный транспорт). Этот процесс лежит в основе такого свойства плазмалеммы, как избирательная проницаемость. В процессе пассивного транспорта энергия молекул АТФ не используется, и клетка сберегает её на другие метаболические реакции.

Активный транспорт химических соединений через плазмалемму

Так как наружная клеточная мембрана обеспечивает перенос молекул и ионов из внешней среды внутрь клетки и обратно, становится возможным вывод продуктов диссимиляции, являющихся токсинами, наружу, то есть в межклеточную жидкость. Активный транспорт происходит против градиента концентрации и требует использования энергии в виде молекул АТФ. В нем также участвуют белки-переносчики, называемые АТФ-азами, являющиеся одновременно и ферментами.

Примером такого транспорта служит натрий-калиевый насос (ионы натрия переходят из цитоплазмы во внешнюю среду, а ионы калия закачиваются в цитоплазму). К нему способны эпителиальные клетки кишечника и почек. Разновидностями такого способа переноса служат процессы пиноцитоза и фагоцитоза. Таким образом, изучив, какие функции выполняет наружная клеточная мембрана, можно установить, что к процессам пино- и фагоцитоза способны гетеротрофные протисты, а также клетки высших животных организмов, например, лейкоциты.

Биоэлектрические процессы в клеточных мембранах

Установлено, что существует разность потенциалов между наружной поверхностью плазмалеммы (она заряжена положительно) и пристеночным слоем цитоплазмы, заряженным отрицательно. Ее назвали потенциалом покоя, и она присуща всем живым клеткам. А нервная ткань имеет не только потенциал покоя, но и способна к проведению слабых биотоков, которое называют процессом возбуждения. Наружные мембраны нервных клеток-нейронов, принимая раздражение от рецепторов, начинают менять заряды: ионы натрия массированно поступают внутрь клетки и поверхность плазмалеммы становится электроотрицательной. А пристеночный слой цитоплазмы вследствие избытка катионов получает положительный заряд. Это объясняет, по какой причине происходит перезарядка наружной клеточной мембраны нейрона, что вызывает проведение нервных импульсов, лежащих в основе процесса возбуждения.

Справочник химика 21

Химия и химическая технология

Наружная мембрана митохондрий

Эта система участвует не только в синтезе ферментов, которые сек-ретируются клеткой, но и в образовании новых мембран. По-видимому, шероховатый ЭР поставляет мембранный материал гладкому ЭР и аппарату Гольджи, а компоненты мембран Гольджи включаются в состав наружной клеточной мембраны. В растительных клетках наружные мембраны митохондрий и мембраны, окружающие вакуоли, также образуются непосредственно из ЭР [19]. Компоненты наружных клеточных мембран, вероятно, могут использоваться повторно, включаясь в соответствующую структуру в ходе эндоцитоза [20]. [c.33]

A. Внутренняя и наружная мембраны митохондрий разделяют два митохондриальных компартмента внутреннюю область [c.71]

Цитозоль Пероксисомы Наружная мембрана митохондрий [c.172]

Наружные мембраны митохондрий могут быть разорваны путем осмотического шока И отделены от внутренних мембран [64]. Анализ фракции наружных и внутренних мембран показывает, что наружные мембраны имеют меньшую плотность ( 1 1 г/см ), чем внутренние Они легко прО(ннцаемы для большинства веществ с мол. весом 10 000 и ниже. Отношение фосфолипид/белок весьМа высокое ( 0,82 по весу), экстракция фосфолипидов ацетоном разрушает мембрану. Для этих фосфолипидов характерно низкое содержание кардиолипина и высокое содержание фосфоинозита и холестерйна. Убихинона в этих мембранах нет. Внутренняя мембрана (плотность 1,2 г/см ) для многих соединений непроницаема. Фактически, за исключением нейтральных молекул с мол. весом Смотреть страницы где упоминается термин Наружная мембрана митохондрий: [c.206] [c.244] [c.143] [c.49] [c.107] [c.125] Основы биохимии Т 1,2,3 (1985) — [ c.510 , c.552 ]

Мембрана наружная

Смотреть что такое «Мембрана наружная» в других словарях:

Наружная запирательная мышца — Наружная запирательная мышца … Википедия

Мембрана клеточная — (лат. мембрана кожица) биологическая «кожица», окружающая протоплазму живой клетки (см. Клетка). Участвует в регуляции обмена веществ между клеткой и окружающей её средой. У некоторых клеток клеточная мембрана единственная структура, служащая… … Концепции современного естествознания. Словарь основных терминов

Ядерная оболочка я мембрана — Ядерная оболочка, я. мембрана * ядзерная абалонка, я. мембрана * nuclear envelope or n. membrane or karyotheca or karyolemma двойная липопротеидная мембрана, которая окружает ядра эукариотических клеток, отделяя их от цитоплазмы. Внешняя… … Генетика. Энциклопедический словарь

пограничная мембрана глиальная наружная — (m. l. glialis externa, LNH) П. м., образованная нейроглией, отделяющая слой палочек и колбочек сетчатки от наружного зернистого слоя … Большой медицинский словарь

Митохондрия — Электронномикроскопическая фотография, показывающая митохондрии млекопитающего в поперечном сечении Митохондрия (от … Википедия

Клеточная стенка (оболочка) бактерий — структура бактерий и грибов, располагающаяся между цитоплазматической мембраной и капсулой (если таковая имеется) или ионизированным слоем внешней среды. Защищает бактерии от осмотического шока (10 25 атм и более) и др. факторов, определяет форму … Словарь микробиологии

плазмалемма — наружная цитоплазматическая мембрана, отделяющая цитоплазму от клеточной стенки. Участвует в обмене веществ между цитоплазмой и внешней средой и в построении клеточной стенки … Анатомия и морфология растений

Куртка штормовая — (штормовка) верхний слой одежды туристов и альпинистов. Она призвана защищать от ветра и влаги. При этом желательно чтобы испарения от тела человека выводились наружу. Штормовка должна быть максимально лёгкой и компактной. Содержание 1… … Энциклопедия туриста

Кровено́сные сосу́ды — (vasa sanguifera, vaea sanguinea) образуют замкнутую систему, по которой осуществляется транспорт крови от сердца на периферию ко всем органам и тканям и обратно к сердцу. Артерии несут кровь от сердца, а по венам кровь возвращается к сердцу.… … Медицинская энциклопедия

Поверхностный слой — Длинный лучевой разгибатель запястья (m. extensor carpi radialis longus) (рис. 90, 113, 114, 116, 118, 122, 123, 125) сгибает пред плечье в локтевом суставе, разгибает кисть и принимает участие в ее отведении. Мышца имеет веретенообразную форму и … Атлас анатомии человека

Цитоплазматическая мембрана: функции, строение. Наружная цитоплазматическая мембрана

Наружная цитоплазматическая мембрана представляет собой тончайшую пленку. Ее толщина — порядка 7-10 нм. Просматривается пленка только в электронный микроскоп.

Структура

Какой состав имеет цитоплазматическая мембрана? Строение пленки достаточно разнообразно. В соответствии с химической организацией, она представляет собой комплекс белков и липидов. Цитоплазматическая мембрана клетки включает в себя бислой. Он выступает в качестве основы. Кроме этого, цитоплазматическая мембрана содержит холестерол и гликолипиды. Этим веществам свойственна амфипатричность. Другими словами, в них присутствуют гидрофобные («боящиеся влаги») и гидрофильные («любящие воду») концы. Последние (фосфатная группа) направлены наружу от мембраны, вторые (остатки от жирных кислот) ориентированы друг к другу. За счет этого и формируется липидный биполярный слой. Липидные молекулы обладают подвижностью. Они способны перемещаться в собственном монослое либо (что редко) из одного в другой.

Цитоплазматическая мембрана: функции

Основными задачами являются:

  • Барьерная. Защитная пленка обеспечивает активный, пассивный, избирательный, регулируемый обмен соединений с внешней средой. За счет избирательной проницаемости осуществляется отделение клетки и ее компартментов и снабжение их нужными веществами.
  • Транспортная. Сквозь пленку осуществляется переход соединений от клетки к клетке. Благодаря этому доставляются питательные соединения, удаляются конечные продукты обмена, происходит секреция разных веществ. Кроме этого, формируются ионные градиенты, на оптимальном уровне поддерживаются ионная концентрация и рН. Они необходимы для активной деятельности ферментов клетки.

Вспомогательные задачи

  • Матричная. Эта функция обеспечивает определенную ориентацию и взаиморасположение белков мембраны, а также оптимальное их взаимодействие.
  • Механическая. За счет нее обеспечивается автономность клетки, внутренних структур. Также осуществляется соединение элемента с прочими аналогичными.

Особые свойства

К специфическим функциям мембраны относят:

  • Ферментативную. Зачастую белки, которые содержит цитоплазматическая мембрана, выступают в качестве ферментов.
  • Генерацию и проведение биопотенциалов.
  • Маркировку. Цитоплазматическая мембрана включает в свой состав особые антигены. Они действуют как маркеры-«ярлыки». Благодаря им осуществляется распознание клеток. Маркеры представляют собой гликопротеины – белки, содержащие разветвленные олигосахаридные боковые цепи. Они выступают в качестве «антенн».

Дополнительные сведения

Если какие-то частицы по тем или другим причинам не способны пройти сквозь фосфолипидный бислой (к примеру, вследствие гидрофильных свойств, поскольку внутри цитоплазматическая мембрана гидрофобна и такие соединения не пропускает, либо из-за больших размеров самих частиц), но они необходимы, то пройти они могут с помощью специальных белков-переносчиков (транспортеров) и белков-каналов. Либо проникновение их осуществляется посредством эндоцитоза.

Модели

Их существует несколько:

  • «Бутербродная модель». Идею о трехслойном строении всех мембран высказали ученые Даусон и Даниэли в 1935 году. По их мнению, структура пленки была следующей: белки-липиды-белки. Такое представление существовало достаточно долго.
  • «Жидкостно-мозаичная структура». Эта модель была описана Николсоном и Сингером в 1972 году. В соответствии с ней белковые молекулы не формируют сплошной слой, а погружаются в биполярный липидный в виде мозаики на различную глубину. Эта модель считается наиболее универсальной.
  • «Белково-кристаллическая структура». В соответствии с этой моделью мембраны формируются за счет переплетения белковых и липидных молекул, которые объединены на базе гидрофильно-гидрофобных связей.

Внутренняя мембрана митохондрий

Содержание

Внутренняя мембрана состоит из множества складок именуемых кристы, которые значительно увеличивают поверхность мембраны и разбивают внутреннее пространство митохондрии на компартметы. Между собой кристы соединяться особыми перемычками белковой природы, которые помогают поддерживать их форму. Эти же перемычки обеспечивают связь внешний и внутренней мембраны в местах расположения транспортёра внешней мембраны мембраны митохондрии (TOM), который ответственен за транспорт белков из цитоплазмы через внешнюю мембрану.

Внутренняя мембрана разбивает митохондрию на два компартмента: межмембранное пространство, которое постепенно переходит в цитозоль и митохондриальный матрикс, расположенный в пределах внутренней мембраны.

Кристы Править

Благодаря кристам площадь внутренней мембраны может быть в разы больше площади внешней. Например, у митохондрий печеночных клеток площадь внутренней мембраны в пять раз превышает площадь внешней. У некоторый клеток с повышенной потребностью в АТФ, например, у клеток мышечной ткани, это соотношение может быть ещё выше. На внутренней стороне кристы усеяны белками, такими как АТФ-аза. Наличие крист оказывает значительно влияние на хемиосмотическую функцию митохондрий [1] .

Перемычки Править

Складки внутренней мембраны соединятся между собой специальными белковыми перемычками. Край каждой кристы частично зашит трансмембранными белковыми комплексами, которые соединяясь голова к голове связывают лежащие друг на против друга мембраны, образуя некое подобие мембранного мешка [2] . Делеция белков Mitofilin/Fcj1, которые входят в комплекс MINOS, образующий перемычки между кристами, приводит к снижению потенциала на внутренней мембране и нарушению роста [3] а также к аномальной структуре внутренней мембраны, которая образует концентрические штабеля вместо типичных впячиваний [4] .

Внутренняя мембрана митохондрий имеет самое высокое содержание белков из всех клеточных мембран: белки составляют 80 % от её массы. Для сравнения во внешней мембране митохондрий они составляю только 50 % от её массы [5] . По липидному составу внутренняя мембрана схожа с мембранами бактерий, что хорошо объяснимо в рамках эндосимбиотической гипотезы.

В митохондриях из сердца свиньи, внутренняя мембрана на 37,0 % состоит из фосфатидилэтаноламина, на 26,5 % из фосфатидилхолина, на 25,4 % из кардиолипина и на 4,5 % из фосфатидилинозитола [6] В митохондриях S. cerevisiae фосфатидилхолин составляет 38,4 % внутренней мембраны, фосфатидилэтаноламин 24,0 %, фосфатидилинозитол 16,2 %, кардиолипин 16,1 %, фосфатидилсерин 3,8 % и фосфатидная кислота 1,5 % [7] .

Внутренняя мембрана проницаема только для кислорода, углекислого газа и воды [8] . Она в значительной степени менее проницаема для ионов и малых молекул чем внешняя мембрана, благодаря чему эффективно отделяет митохондриальный матрикс от цитоплазмы, что необходимо важно для функционирование митохондрий. Внутренняя мембрана митохондрий является одновременно электрическим изолятором и химическим барьером. Сложные ионные транспортёры обеспечивают специфический транспорт некоторых молекул через этот барьер. Существует несколько антипортов, которые позволяют обмениваться молекулами (в основном анионы) между цитозолем и митохондриальным матриксом [5] .

Оставить комментарий

avatar
  Подписаться  
Уведомление о