Преобразователь мощности напряжения



Повышающие трансформаторные преобразователи напряжения большой мощности

Повышающие трансформаторные преобразователи напря­жения на транзисторах широко используются в нестационарных и полевых условиях для замены сети 220 В 50 Гц для питания сете­вой аппаратуры и приборов.

Такие преобразователи должны обеспечивать выходную мощность от единиц до сотен ватт при питании от аккумуляторов или генераторов постоянного тока напряжением от 6 до 24 В.

Обычно в качестве преобразователей напряжения повы­шенного напряжения используют автогенераторные преобразо­ватели или трансформаторнью преобразователи с внешним возбуждением.

Пример двухтактного трансформаторного автогенератора [10.1], преобразующего постоянное напряжение 12 Б в перемен­ное 220 В, показан на рис. 10.1. Преобразователь работает на по­вышенной частоте преобразования — 500 Гц (под нагрузкой) и 700 Гц на холостом ходу. КПД преобразователя около 75%. Такой преобразователь можно использовать, преимущественно, для пи­тания активной нагрузки, например, паяльника, осветительной лампы. Его выходная мощность — до 40 Вт.

Резистор R1 является ограничителем базового тока. Цепь R2, С1 создает запускающий импульс тока в момент включения питания генератора. Дроссель L1 ДПМ-0,4 снижает вероятность самовозбуждения преобразователя на повышенной частоте (бо­лее 10 кГц).

Для трансформатора Т1 использован магнитопровод транс­форматора кадровой развертки (ТВК). Все его обмотки перемо­таны. Обмотки I и II содержат по 30 витков провода ПЭВ 0,6…0,8. Обмотка III содержит 20 витков провода ПЭВ 0,16…0,2; обмотка IV — 1000 витков такого же провода. Намотка обмоток I и II ве­дется одновременно в два провода виток к витку. Обмотка III

Рис. 10.1. Схема преобразователя напряжения средней мощности

Рис. 10.2. Схема мощного преобразователя напряжения

наматывается также виток к витку. Обмотка IV — внавал равно­мерно по каркасу.

Повышающий трансформаторный преобразователь напря­жения аккумулятора (рис. 10.2) позволяет получить на выходе на­пряжение 220 В 50 Гц, потребляя при напряжении 12 В ток 5A[^ 0.2].

В основе устройства — задающий генератор прямоуголь­ных импульсов, выполненный по схеме мультивибратора, типовая схема которого была приведена ранее на рис. 1.1. Рабочая часто­та этого генератора должна быть 50 Гц. Поскольку выходная мощность задающего генератора невелика, к выходам мульти­вибратора подключены двухкаскаднью усилители мощности, по­зволяющие получить усиление по мощности до 1000 раз.

На выходе усилителя включен повышающий низкочастотный трансформатор Т1. Диоды VD1 и VD2 защищают выходнью транзи­сторы преобразователя при их работе на индуктивную нагрузку.

В качестве трансформатора Т1 можно использовать унифи-цированнью трансформаторы типа ТАН или Г/7/7. Транзисторы VT1 и VT4 допустимо заменить на КТ819ГМ (с радиаторами); VT2 и VT3 — КТ814, КТ816, КТ837; диоды VD1 и VD2 — Д226.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.3) может обеспечить выходную мощность 100 Бт [10.31.

Рис. 10.3. Схема преобразователя напряжения мощностью 100 Вт

На преобразователь подается постоянное напряжение 12 Б от аккумулятора. Его задающий генератор формирует два пара-фазных напряжения с частотой 50 Гц (частота промышленной сети). Напряжения с задающего генератора подаются на два од­нотипных импульсных усилителя, которью коммутируют напряже­ние на первичной обмотке трансформатора Т1. Со вторичной обмотки трансформатора Т1 переменное напряжение 220 Б час­тотой 50 Гц поступает в нагрузку.

Задающий генератор (см. типовую схему узла на рис. 1.1) на основе симметричного мультивибратора отличается использо­ванием диодов, включенных в базовью цепи транзисторов. За счет нелинейности БЛХ диодов выходные импульсы мультивибра­тора имеют незначительные выбросы.

К выходам задающего генератора подключены два одно­типных трехкаскадных усилителя. На вторичной обмотке Т1 полу­чается переменное напряжение 220 Б.

Силовой трансформатор Т1 намотан на Ш-образном магни­топроводе сечением 12 сь/. Первичная обмотка содержит две по­ловины по 240 витков провода НЭП 0,65 мм. Вторичная обмотка имеет 4400 витков провода НЭП 0,25 мм.

Выходные транзисторы VT1 и VT6 установлены на радиато­ры площадью по 100 cf/.

Для защиты выходных транзисторов следует использовать вьюокочастотнью диоды VD1 и VD2 типа КД213, КД2997. Транзи­сторы VT1 и VT6 можно заменить на КТ819ГМ (с радиаторами); VT2 и VT5 — КТ805; VT3 и VT4 — КТ208.

Схема простого преобразователя напряжения, позволяю­щего при питании от автомобильного аккумулятора 12 В получить на выходе напряжение 220 В 50 Гц, показана на рис. 10.4. [10.4]. Максимальная выходная мощность преобразователя — 100 Вт, КПД —до 50%.

Рис. 10.4. Схема простого преобразователя напряжения

Устройство потребляет от аккумулятора ток до 20 Л.

В качестве силового использован готовый сетевой транс­форматор на 100 Вт (сечение центральной части железного сер­дечника — около 10 cм^). У него должны быть две вторичные обмотки, рассчитанные на 8 Б/10 Л каждая.

Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R3 и R4.

Преобразователь напряжения повышенной мощности рабо­тает от аккумуляторной батареи (рис. 10.5) и позволяет получить на выходе переменное напряжение 220 В частотой 50 Гц [10.5]. Мощность нагрузки может достигать 200 Вт.

Трансформатор Т1 намотан на ленточном магнитопроводе ШЛ12х20. Первичная обмотка содержит 500 витков ПЭВ-2 0,21, отвод от середины. Обмотки управления имеют по 30 витков того же провода диаметром 0,4 мм.

Трансформатор Т2 — также на ленточном магнитопроводе ШЛ32х38. Первичная обмотка содержит 96 витков провода ПЭВ-2 2,5, отвод от середины. Вторичная обмотка имеет 920 витков про­вода ПЭВ-2 диаметром 0,56 мм.

Выходные транзисторы устанавливаются на радиаторах площадью по 200 cм^. Сильноточные токовводы должны иметь сечение не менее 4 мм^.

Работа преобразователя проверялась от аккумулятора 6СТ60.

Для питания электробритвы от автомобильной бортовой сети с постоянным напряжением 12 В предназначено следующее устройство (рис. 10.6) [10.6]. Оно потребляет под нагрузкой ток около 2,5 у4.

В преобразователе задающий генератор на триггере DD1.1 вырабатывает частоту 100 Гц. Потом делитель частоты на триг­гере DDI.2 уменьшает ее в 2 раза, а предварительный усилитель на транзисторах VT1, VT2 раскачивает усилитель мощности на транзисторах VT3, VT4, нагруженный на трансформатор Т1. За­дающий генератор обладает стабильностью частоты не хуже 5% при изменении питающего напряжения от 6 до 15 S. Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразова­теля. Микросхема DDI К561ТМ2 <564ТМ2) и транзисторы предва­рительного усилителя питаются через фильтр R9, СЗ и С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной часто­той около 50 Гц.

Рис. 10.5. Схема преобразователя напряжения повышенной мощности

Рис. 10.6. Схема преобразователя напряжения для питания электробритвы

Трансформатор Т1 можно изготовить на основе любого сетевого трансформатора мощностью 30…50 Вт. Все ранее су­ществовавшие вторичнью обмотки с трансформатора удаляют (сетевая будет служить новой вторичной обмоткой), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 диаметром 1,25 мм две полуобмотки, каждая с числом витков, соответствующим ко­эффициенту трансформации около 20 по отношению к остав­ленной обмотке на 220 В. Если число витков вьюоковольтной обмотки неизвестно, количество витков низковольтной обмотки определяют экспериментально, подбором числа витков до полу­чения на выходе преобразователя напряжения 220 В.

Емкость конденсатора С5 подбирают из условия получения максимального выходного напряжения при подключенной нагрузке.

Схема преобразователя (рис. 10.6) была упрощена В. Ка-равкиным [10.7]. Усовершенствования коснулись только задаю­щего генератора, схема которого показана на рис. 10.7. Этот генератор работает на частоте 50 Гц.

Преобразователь постоянного напряжения 12 Б в перемен­ное 220 В (рис. 10.8) при подключении к автомобильному аккуму­лятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2…3 часов [10.8]. Задающий генератор на симметричном мультивибраторе (VT1 и VT2) нагружен на мощные парафазные ключи (VT3 — VT8), коммутирующие ток в первичной обмотке

Рис. 10.7. Вариант схемы задающего генератора для преобразо­вателя напряжения

Рис. 10.8. Схема преобразователя напряжения на 100 Вт

повышающего трансформатора Т1. Мощные транзисторы VT5 и VT8 защищены от перенапряжений при работе без нагрузки дио­дами VD3 и VD4.

Трансформатор выполнен на магнитопроводе ШЗбхЗб, низ­ковольтные обмотки Г и I» имеют по 28 витков провода ПЭЛ диа­метром 2,1 мм, а повышающая обмотка II — 600 витков ПЭЛ диаметром 0,6 мм, причем сначала наматывают W2, а поверх нее двойным проводом (с целью достижения симметрии полуобмоток) W1. При налаживании с помощью резистора R5 добиваются ми­нимальных искажений формы выходного напряжения.

Схема преобразователя напряжения на 300 Вт показана на рис. 10.9 [10.9]. Задающий генератор преобразователя собран на однопереходном транзисторе VT1, резисторах R1 — R3 и кон­денсаторе С2. Частоту генерируемых им импульсов, равную 100 Гц, D-триггер на микросхеме DDI К561ТМ2 делит на 2. При этом на выходах триггера формируются парафазные импульсы, следующие с частотой 50 Гц. Они через буферные элементы — инверторы /СМО/7-микросхемы К561ЛН2 управляют ключевыми транзисторами (блок 1), включенными по схеме двухтактного усилителя мощности. Нагрузкой этого каскада служит трансфор­матор Т1, повышающий импульсное напряжение до 220 В.

Рис. 10.9. Схема преобразователя напряжения на 300 Вт

Трансформатор Т1 выполнен на магнитопроводе ПЛ25х100х20. Обмотки I и II содержат по 11 витков из алюми­ниевой шины сечением 3×2 мм, обмотка III выполнена проводом ПБД диаметром 1,2 мм и имеет 704 витка.

Приступая к налаживанию устройства плюсовой проводник источника питания отключают от точки соединения обмоток I и II трансформатора Т1 и, пользуясь осциллографом, проверяют час­тоту и амплитуду импульсов на базах транзисторов. Амплитуда импульсов должна быть около 2 S, а их частоту следования, рав­ную 50 Гц, устанавливают резистором R1.

Каждый из выходных транзисторов установлен на теплоот­воде с площадью около 200 см^. Резисторы в коллекторных цепях транзисторов изготовлены из нихромового провода диаметром 1,2 мм (10 витков на оправке диаметром 4 мм). Если их включить в эмиттерные цепи транзисторов, то транзисторы каждого плеча можно будет установить на общий теплоотвод.

Нагрузку к преобразователю допускается подключать толь­ко после того, как на схему будет подано питание.

Все рассмотренные ранее повышающие преобразовате­ли имели нерегулируемое и нестабилизированное выходное напряжение.

На рис. 10.10 показан простой повышающий преобразова­тель [10.10], к достоинствам которого можно отнести:

• стабилизированное выходное напряжение;

• возможность регулировки величины выходного напряжения в значительных пределах;

• применение широко распространенных элементов;

• использование в качестве Т1 типового трансформатора ТН-46-127/220-50 без каких-либо переделок.

Рис. 10.10. Схема повышающего преобразователя 9…12,6 В/220 В, 18 Вт с регулируемым стабилизированным выходным напряжением переменного тока

Преобразователь выполнен на транзисторах VT4 и VT5 по классической схеме Ройера. Его питание осуществляется от регу­лируемого стабилизатора напряжения на транзисторах VT1 — VT3. Следует иметь в виду, что транзисторы VT3 — VT5 обяз^-тельнб должны быть установлены на теплоотводящих пластинах. Составной стабилитрон VD1 — VD2 <КС147А и КС133А) можно за­менить на КС182. Максимальный ток нагрузки — до 100 мА.

Преобразователи постоянного напряжения

В автономной переносной и передвижной радиоаппаратуре, потребляющей сравнительно небольшие мощности, в качестве источников электроэнергии используются работающие независимо от внешней сети источники постоянного тока низкого напряжения: гальванические элементы, аккумуляторы, термогенераторы, солнечные и атомные батареи. Иногда для функционирования радиоаппаратуры возникает необходимость преобразования постоянного напряжения одного номинала в постоянное напряжение другого номинала. Эту задачу выполняют различные преобразователи постоянного тока, а именно: электромашинные, электромеханические, электронные и полупроводниковые.

В полупроводниковом преобразователе энергия постоянного тока превращается в энергию прямоугольных импульсов с помощью переключающего устройства. В качестве основных элементов этого устройства используются MOS FET и IGBT транзисторы и тиристоры. Преобразователи с выходом на переменном токе называются инверторами. Если выход инвертора, соединить с выпрямителем, включающим сглаживающий фильтр, то на выходе устройства, называемого конвертором, можно получить постоянное напряжение Uвых, которое может существенно отличаться от напряжения на входе UBX,, т.е. конвертор — это своеобразный трансформатор постоянного напряжения.

При высоком значении питающего напряжения, а также при отсутствии ограничений по массе и объему преобразователи рационально выполнять на тиристорах. Полупроводниковые преобразователи на транзисторах и тиристорах подразделяются на нерегулируемые и регулируемые, причем последние используются и как стабилизаторы постоянного и переменного напряжения.

По способу возбуждения колебаний в преобразователе различают схемы с самовозбуждением и с независимым возбуждением. Схемы с самовозбуждением представляют собой импульсные автогенераторы. Схемы с независимым возбуждением состоят из задающего генератора и усилителя мощности. Импульсы с выхода задающего генератора поступают на вход усилителя мощности и управляют им.

1. Преобразователи с самовозбуждением

Преобразователи с самовозбуждением выполняются на мощности до нескольких десятков ватт. В радиоустройствах они нашли применение как маломощные автономные источники, электропитания и как задающие генераторы мощных преобразователей, Структурная схема преобразователя с самовозбуждением приведена на рис. 1.

Рис. 1. Структурная схема преобразователя напряжения с самовозбуждением

На вход преобразователя подается постоянное питающее напряжение UBX. В автогенераторе постоянное напряжение преобразуется в напряжение, имеющее форму прямоугольных импульсов.

Прямоугольные импульсы с помощью трансформатора изменяются по амплитуде и поступают на вход выпрямителя, после которого на выходе преобразователя (конвертора) получим требуемое по величине и напряжение постоянного тока Uвых. При прямоугольной форме импульсов выпрямленное напряжение по форме близко к постоянному, вследствие чего упрощается сглаживающий фильтр выпрямителя.

2. Однотактный преобразователь напряжения.

В основе работы схемы (рис. 2), как и большинства преобразователей, лежит принцип прерывания постоянного тока в первичной обмотке импульсного трансформатора с помощью транзистора, работающего в ключевом режиме.

Рис. 2. Однотактный полупроводниковый преобразователь

напряжения с самовозбуждением

В коллекторную цепь транзистора включена первичная обмотка трансформатора ωк, в эмиттерно-базовую цепь — обмотка обратной связи ωб. Поскольку обмотки ωк и ωб размещаются на одном магнитопроводе, то существующая между ними магнитная связь и порядок подключения концов обмоток обеспечивают в итоге положительную обратную связь в автогенераторе.

При подключении источника постоянного тока UBX в цепи коллектора транзистора VT и в обмотке ωк начинает: протекать ток, который вызывает нарастающий магнитный поток в магнитопроводе импульсного трансформатора. Этот поток, воздействуя на обмотку обратной связи ωб, наводит в ней ЭДС самоиндукции, причем обмотка ωб включается, относительно обмотки ωк таким образом, чтобы ЭДС, наведенная в ней, еще больше открыла транзистор (для р-п-р транзистора на базе относительно эмиттера создается дополнительное отрицательное напряжение). Когда магнитный поток достигнет насыщения, исчезнут ЭДС и токи в обмотках, появится противо-ЭДС, запирающая транзистор, и процесс начнется сначала. Необходимо отметить, что при открытом транзисторе VT вследствие небольшого значения его внутреннего сопротивления весьма небольшим будет падение напряжения на нем, даже при токе, равном току насыщения. Поэтому в этом случае практически все входное напряжение UBX приложено к первичной коллекторной обмотке трансформатора ωк.

В результате периодического включения транзистора по первичной обмотке трансформатора ωк потечет ток, импульсы которого будут иметь почти прямоугольную форму. Во вторичную обмотку трансформатора ωвых трансформируются импульсы той же формы, частоты следования и полярности; эти импульсы используются для получения выпрямленного напряжения с помощью однополупериодного выпрямителя. Резистор RРБ в базе транзистора ограничивает ток базы.

Преобразователи описанного типа целесообразно применять при высоком значении выходного напряжения UBЫX и малых токах, в частности, для питания высоковольтного анода в электронно-лучевых трубках. Основным недостатком однотактной схемы автогенератора является постоянное подмагничивание магнитопровода, обусловленное тем, что ток по коллекторной (первичной) обмотке трансформатора течет только в одном направлении, Постоянное подмагничивание ухудшает условия передачи мощности из первичной обмотки трансформатора во вторичную, и поэтому однотактные автогенераторы используют при малых мощностях (несколько ватт), когда невысокий КПД не является определяющим фактором.

Выбираем преобразователь с 12 на 220 вольт

За долгие годы после появления электричества мы окончательно привыкли к сети 220, что любой прибор может от неё работать. Различную бытовую технику нам хочется взять с собой в путешествия или на отдых, но в автомобиле только 12 или 24. Для решения этой проблемы лучше всего использовать преобразователь напряжения с 12 до 220 вольт. Благодаря современной элементной базе и ШИМ контроллерам, такой блок стал миниатюрным и лёгким.

Второе распространённое название, это «автомобильный инвертор». Соответственно в интернет-магазине может называться по-разному, не всегда бывает легко найти.

Как всегда китайцы заманивают нас низкими ценами и большими мощностями инверторов 12 в 220. Об этом расскажу отдельно, вас вряд ли интересуют китайские ватты, у которых один нолик бывает лишний.

  • 1. Применение
  • 2. Технические характеристики
  • 3. Мощность
  • 4. Охлаждение
  • 5. Пример характеристик
  • 6. Типовое энергопотребление
  • 7. Дополнительная защита
  • 8. Подключение в авто
  • 9. Как сделать своими руками
  • 10. Подключение ноутбука в авто
  • 11. Цены на преобразователи

Применение

Инверторы напряжения DC-AC нашли широкое применение в местности без электрификации. От стандартного аккумулятора на 12В можно получить бытовые 220В. Форма электрического тока на выходе немного ограничивает применение, не все электрические приборы могут переносить синусоиду почти прямоугольной формы.

По количеству Ватт на выходе в основном бывают:

  • автомобильные на 100вт, 300вт, 500 Ватт;
  • мощные стационарные 2000вт, 3000вт, 5000вт, 10000вт.

По конструкции делятся на:

  1. на автомобильные;
  2. стационарные;
  3. компактные.

Рассматривать преобразователь с 12 на 220 в машину буду для использования питания светодиодного освещения, так как весь сайт этому посвящен. Но всё это распространяется и на любую бытовую технику с питанием от сети 220В.

При выезде на пикник или отдаленную дачу бывает необходимость осветить помещение или место ночёвки. Самый простой способ, подключить светодиодный светильник или лампу для дома в автомобильный инвертор 12 220v. Это конечно не очень оптимально с точки зрения экономного расхода энергии аккумулятора авто, КПД снижается вместе с увеличением нагрузки. В лампочке тоже стоит ШИМ драйвер для питания светодиодов.

Стационарный инвертор 12 в 220 с чистым синусом незаменим при использовании энергии солнечных батарей или ветряков. Изначально такие генераторы выдают 12В, 24В, 36В, которые можно напрямую аккумулировать.

Компактные модели могут питаться от 12в до 50в, более неприхотливы в выборе источника питания. В автомобильном варианте выглядят как большая зарядка с розеткой.

Технические характеристики

Все DC — AC преобразователи тока с 12 на 220 на выходе имеют стандартные параметры, частота 50 Герц и 220V. Они соответствуют параметрам в нашей домашней сети и совместимы практически со всеми домашними устройствами.

Основные параметры:

  1. номинальная мощность;
  2. коэффициент полезного действия;
  3. активное или пассивное охлаждение;
  4. энергопотребление на холостом ходу;
  5. максимальный ток потребления на входе;
  6. напряжение питания;
  7. защита от замыкания и перегрева;
  8. вид синусоиды на выходе.

Все современные преобразователи конструктивно реализованы на импульсных контроллерах, которые обеспечивают высокий коэффициент полезного действия. Это значение может достигать 95%, остальные 5% энергии будут рассеиваться самим прибором, за счет которых он нагревается.

Самые доступные модели имеют модифицированную синусоиду на выходе, прямоугольного вида. У дорогих «чистая синусоида», такая же плавная, как обычной домашней розетке.

Некоторые электроприборы при включении потребляют энергии в 2 раза больше. Например, бытовая дрель на 750вт не сможет запуститься от инвертора на 1000вт. Пиковой кратковременной мощности повышающего преобразователя напряжения может не хватить для старта двигателя. Решением такой проблемы будет использование электроприборов с плавным пуском.

Мощность

Реальная мощность дешевых DC-AC преобразователей с 12 на 220 может быть в 2 – 3 раза ниже. Интернет-магазины и производители используют китайский маркетинг для увеличения продаж. Крупно указывают кратковременную пиковую мощность, на которой прибор может работать 5 минут, пока не отключится из-за перегрева и перегрузки.

Для домашнего можно смело покупать стационарные на 2000 вт, 3000 вт, 5000 вт, всегда найдется чем его загрузить. Промышленные уже на 10000вт, 15000вт и выше, рассчитаны на энергоснабжение электроинструментов. Для легковых автомобилей достаточно 100вт, 300вт, 500 Ватт, 2000вт. Если больше, то требуется серьёзная подготовка транспорта.

При выборе уточняйте, как мощность указана, номинальная долговременная или кратковременная. При подсчёте предполагаемой нагрузки делайте запас на 20%, чтобы не эксплуатировать преобразователь не пределе, это значительно продлит его ресурс. У дорогих есть запас, у дешевых наоборот, слегка не хватает до нормы.

Подключение лучше проводит у специалистов, сила тока от аккумулятора для автомобильного инвертора на 500W будет около 50А. По неосторожности можно спалить провода и много чего другого. Лучше перестраховаться и поставить дополнительный предохранитель или систему защиты. Джиперы ставят отдельную кнопку отключения массы. Я сторонник максимальной безопасности, на себе попробовал все виды воздействия электричества, даже когда отвертка в руках плавится.

Охлаждение

Пассивное с ребрами из алюминия

Нагрев зависит от полной мощности инвертора и подключенной нагрузки. В качестве системы охлаждения используется алюминиевый корпус устройства. Когда мощность большая, то устанавливается вентилятор, за счёт которого циркулирует воздух внутри. Активное охлаждение работает не постоянно, только когда температура корпуса превышает установленную и термодатчик включает вентилятор.

Автомобильный транспорт и любой другой подвержены сильному воздействию пыли. Поэтому при большой нагрузке вентилятор может просто не включится, потому что забился пылью.

Активное охлаждение с вентилятором

Пример характеристик

В качестве наглядного примера рассмотрим типовые параметры обычного повышателя.

1. Номинальная рабочая 1000вт, работать на ней может любое количество времени.

2. Максимальная 2000вт, только в течение короткого промежутка времени 5-10 минут, некоторые приборы на старте потребляют в 2 раза больше.

3. Ток без нагрузки 1А, энергопотребление самого преобразователя напряжения от батареи без нагрузки. При 12В это будет 12 Ватт в час.

4. Форма сигнала, модифицированная синусоида — колебания тока прямоугольной формы, все дешевые повышатели дают только такую форму.

5. Входное напряжение 11-15В, при выходе за эти значения сработает защита, и всё отключится.

6. Напряжение на выходе 220В ±10%. Показатель зависит от нагрузки на инвертор и его качества. Обычно питание электроники рассчитано на изменения питания в этих пределах.

7. Частота тока 50Гц, частота колебаний в секунду.

8. КПД 94%, средний коэффициент полезного действия. Остальные 6% потребляет сам прибор, за счёт которых и нагревается. Хорошим КПД считается от 90%.

Типовое энергопотребление

В таблице указано минимальное потребление энергии для популярной бытовой техники. Чтобы узнать количество Ватт для конкретного прибора, посмотрите количество Ватт на его блоке питания или поищите на корпусе. Если известна только маркировка и название модели, то всегда можно погуглить характеристики. Точнее всего будет замерять ваттметром еще дома, чтобы узнать точные реальные показатели, которые сильно зависят от режима работы.

Схема стабилизированного преобразователя напряжения 12 220 В

Раньше я уже писал о преобразователе напряжения. В данной статье вашему вниманию предлагается более улучшенный вариант схемы преобразователя. Основное её достоинство – это стабилизация выходного напряжения. Представьте ситуацию, после продолжительной работы уровень заряда аккумуляторной батареи снижается, большинство преобразователей напряжения 12 220 по линии 220 также начнут понижать напряжение, а это может крайне неблагоприятно сказаться на потребителе. Описываемая ниже схема преобразователя напряжения лишена этого недостатка, и нагрузка получает стабильное питание практически до полной разрядки автомобильного аккумулятора.

Преобразователь напряжения 12 220 – это устройство позволяющее из 12 В постоянного напряжения автомобильной аккумуляторной батареи получить переменное 220 В частотой 50 ГЦ. Такие приборы имеют достаточно большой спрос. Кто-то берет с собой в поездку автомобильный преобразователь напряжения, кто-то в поход, а кто-то использует преобразователь дома для питания телевизора в моменты отключения электроэнергии в сети.

При разработке схемы встал вопрос, какой преобразователь напряжения взять за основу. Было решено применить схему мощного преобразователя, но с задающим генератором на микросхеме К561ТМ2. Такой генератор обладает нужной стабильностью частоты, что позволяет получить одинаковую амплитуду и длительность импульсов. Налаживания не требует в отличие от генератора на транзисторах. Также схема преобразователя была дополнена блоком стабилизации выходного напряжения.

Предлагаю взглянуть на схему преобразователя напряжения 12 220 В:

На элементах DD1.1, VD2, VD3, C1, C2, R1, R2 выполнен задающий генератор, а задает он собственно импульсы с четкой частотой следования 100 Гц. Далее импульсы поступают на вход D-триггера (11 вывод) DD1.2, который делит на два их частоту следования, и на выходе получаем два прямоугольных сигнала противоположных по фазе и с двойной скважностью. Эти сигналы являются управляющими двухтактного выходного каскада преобразователя напряжения. С прямого выхода (13 вывод) сигнал проходит компоненты C5, C7, R4 и поступает на базу транзистора VT2. Сигнал с инверсного выхода (12 вывод) делает путь через C6, C8, R5 и приходит на базу транзистора VT3. На конденсаторах C5, C7 и C6, C8 происходит утечка постоянной составляющей сигналов, для ее восстановления служат диоды VD6 и VD7.

Давайте теперь подробней рассмотрим схему двухтактного выходного каскада преобразователя напряжения. Он представляет собой два составных транзистора. Каждый такой транзистор собран по схеме Дарлингтона и содержит по три транзистора VT2, VT4, VT6 и VT3, VT5, VT7 соответственно. Чтобы избежать в выходном каскаде нестабильности теплового режима и уменьшить влияние разброса параметров транзисторов на его характеристики, в схему преобразователя введены резисторы R9 – R12. Для защиты транзисторов от выбросов напряжения самоиндукции применены диоды VD8 и VD9. Балансировка каскада осуществляется подстроечным резистором R6.

Взгляните еще раз на схему преобразователя напряжения 12 220 В, первичная обмотка трансформатора T1 подключена к коллекторам составных транзисторов. С вторичной обмотки получаем выходное переменное напряжение 220 В. Для того, чтобы форма выходного напряжения была близкой к синусоидальной необходимо сгладить ее прямоугольный профиль, эту роль выполняют конденсаторы С10, С11 и С12.

Нам осталось рассмотреть последний узел схемы преобразователя напряжения. Я упоминал о нем в начале статьи и выделил его как достоинство данной конструкции. Действительно, переоценить вносимую этим блоком функциональную составляющую сложно. Речь идет о блоке стабилизации выходного напряжения. Он состоит из элементов VT1, VD4, VD5, VD10, VD11, C9, R6, R7, R8. Алгоритм работы следующий. С диодов VD10 и VD11 выпрямленное выходное напряжение через делитель на резисторах R7, R8 проходит сглаживание на конденсаторе С9 и поступает на базу транзистора VT1. Напряжение на базе транзистора VT1, как видим, зависит от выходного напряжения. При увеличении выходного напряжения растет и напряжение на базе VT1. Растет оно до отметки 0,6 В, дальше происходит открытие транзистора и амплитуда импульсов на базах транзисторов VT2 и VT3 благодаря диодам VD4 и VD5 уменьшится, и дальнейшее увеличение выходного напряжения остановится.

Ну что ж со схемой преобразователя напряжения с питанием от автомобильной аккумуляторной батареи мы разобрались, предлагаю перейти к печатной плате.

Печатная плата автомобильного преобразователя напряжения 12 220 В, вид со стороны элементов:

А это вид печатной платы автомобильного преобразователя напряжения со стороны выводов:

Скачать печатную плату преобразователя в формате .lay можно по ссылке в конце статьи.

Детали. Транзистор VT1 можно брать с любым буквенным индексом из серий КТ315, КТ3102, КТ503. Транзисторы VT2 и VT3 – КТ315 с буквенным индексом Б, Г, Е или КТ342 с буквенным индексом А, Б, Г. VT4, VT5 – КТ815 или КТ817 без ограничений. В качестве выходных транзисторов VT6 и VT7 подойдут любые из серии КТ819. Обратите внимание VT6 и VT7 должны быть установлены на теплоотводе с площадью рассеивания не менее 200 см 2 на каждый транзистор. Диоды VD2 – VD7 любые из серий КД103, КД521, КД522. Под VD8, VD9 подойдут диоды КД208А или КД226А. Конденсаторы С1, С2, С4, С10, С11 керамические, но подойдут и пленочные, например К73-17. Конденсаторы С3, С5 – С9 – электролитические, с номинальным напряжением не ниже указанного на схеме. С12 пленочный неполярный на напряжение не ниже 630 В. Резистор R6 подстроечный, типа СП3-38а.

Под трансформатор Т1 подойдет с небольшими переделками ТП-100-7. Переделки касаются обмоток, а именно необходимо их все кроме сетевой удалить. Сетевая это обмотка II по схеме. Обмотку I нужно намотать проводом ПЭВ-2 1,6, а число витков подбирается экспериментальным путем, делается это следующим образом: при подключении к электросети обмотки II на половинах обмотки I должно быть напряжение в пределах 8,5 – 10,5 В.

Сетевая обмотка II, которую оставляем как есть, по умолчанию намотана проводом ПЭВ-1 0,55, и содержит 572 + 572 витка.

С деталями вроде бы разобрались, переходим к наладке преобразователя напряжения 12 220 В. Начинаем с отключения блока стабилизация, для этого отпаиваем один вывод резистора R7 или провод идущий к VD10, VD11 (смотрите рисунок с печатной платой преобразователя напряжения). Затем движок резистора R6 выставляем в среднее положение, к выходу подключаем вольтметр, настроенный на переменное напряжение и максимальный диапазон не ниже 400 В, подключаем питание к преобразователю напряжения от автомобильного аккумулятора. Вольтметр должен индицировать выходное напряжение в диапазоне 250 – 320 В.

Подключаем обратно блок стабилизации и подбираем сопротивление резистора R7 таким, чтобы выходное напряжение было 220 В. Теперь нужно настроить выходной каскад преобразователя напряжения. В разрыв каждого (кроме среднего) вывода первичной обмотки включаем лампу накаливания 12 В 10 Вт, подаем питание на преобразователь и, поочередно подключая вольтметр к каждой лампе, с помощью резистора R6 выставляем одинаковое напряжение на каждой лампе.

В заключении хотелось бы отметить, что данный преобразователь напряжения от автомобильной аккумуляторной батареи 12 В отлично себя зарекомендовал и уже несколько лет выручает в моменты отключения электроэнергии, а также в автомобильных походах когда есть необходимость в питании сетевых приборов.

Список файлов

Печатная плата стабилизированного преобразователя напряжения

Автомобильный преобразователь напряжения

По просьбам наших уважаемых радиолюбителей, а именно в статье Саб с усилителем на TDA1562Q открываем новую довольно интересную тему про преобразователи напряжения, в частности автомобильные.

Преобразователи напряжения – это довольно актуальная тема для радиолюбителей автомобилистов, которые задаются целью установить в машине качественную акустическую систему с мощным бомбовым сабом и сателлитами, получив тем самым отличное качественное звучание, радующее слух не только владельца, но и окружающих. Уж не знаю, конечно, насколько окружающим это нравится. Особенно в ночное время во дворе многоквартирного дома (прим. авт. AndReas). Но непосредственно для радиолюбителя важен сам факт качества звучания. Добиться безупречности можно при наличии нескольких составляющих: во-первых, установкой правильно рассчитанного и собранного саба (лучше самодельного), во-вторых, подключением акустической системы, состоящей из сабвуфера и сателлитов, к усилителю мощности звуковой частоты с малым коэффициентом нелинейных искажений и, в-третьих, питанием усилителя мощности звуковой частоты (УМЗЧ) от бортовой сети автомобиля (нужен преобразователь напряжения). В данной статье остановимся на последнем факторе подробнее.

Напряжение автомобильной бортовой сети составляет 12…14 вольт. Как известно, все качественные, мощные усилители звуковой частоты требуют значительно большего напряжения питания (вплоть до 100 вольт), что может быть достигнуто применением автомобильного преобразователя напряжения. Основные блоки типичных преобразователей напряжения состоят из ШИМ – контроллера и выходного каскада на мощных транзисторах и трансформатора. В качестве ШИМ контроллера для автомобильных преобразователей напряжения могут применяться различные микросхемы. Особенно популярной и широко применяемой является TL494 или КР1114ЕУ4. Вообще-то на сайте уже есть несколько схем преобразователей напряжения. Ознакомьтесь: Преобразователь 12 вольт — 220 вольт — довольно неплохой вариант для переделки под питающий блок усилителя; Простейший преобразователь напряжения; Импульсный преобразователь напряжения — это уже более серьёзный вариант с применением TL494 или КР1114ЕУ4. Также совершенно обоснованно стоит упомянуть об автомобильном преобразователе напряжения, рассчитанном для питания усилителя мощности звуковой частоты на микросхеме TDA7294 — собран на TL494 или КР1114ЕУ4.

Теперь поговорим о трансформаторе. Трансформатор для автомобильного преобразователя напряжения мотается на ферритовом кольце. Из отечественных ферритов наилучшими характеристиками обладают ферриты марок 2500НМС1 и 2500НМС2 как имеющие, в отличие от остальных марок, отрицательную температурную зависимость потерь и предназначенные для сильных магнитных полей. Но также возможно применение 2000НМ1, как более ходовой марки. Можно использовать кольца 40х25х11 или 45х28х12. Для надёжности лучше взять два таких кольца, т.к. мощность нужна немаленькая, и склеить их любым клеем по керамике. После склеивания края закруглить напильником.

Теперь нужно рассчитать количество витков обмоток в зависимости от нужного напряжения и мощности на выходе автомобильного преобразователя напряжения. Возьмем для примера максимальную мощность трансформатора 500 ватт. Тогда ток в первичной обмотке равен I=500/12=41,66 ампера. Округленно примем I=42 А. Но в преобразователях напряжения первичная обмотка трансформатора делится на две части (двухтактный преобразователь напряжения). Соответственно ток в каждом плече составит 21 ампер. Выбираем сечение обмоточного провода трансформатора. Площадь сечения получается S=0,157*21=3,297 мм 2 или же провод сечением D=2 мм. Но чем толще провод, тем ниже КПД и выше нагрев трансформатора. Рекомендуется взять несколько проводов меньшим диаметром, к примеру, 0,6 мм. Вычисляем его площадь по формуле S=?*R 2 , т.е. 0,3 2 *3,14=0,283 мм 2 . Далее 3,297/0,283=11,7 округлим до 12. Значит, для намотки одного плеча нам понадобится 12 проводов сечением 0,6 мм. Вторичная обмотка трансформатора преобразователя напряжения рассчитывается таким же образом. Определяем максимальный ток в зависимости от нужного напряжения (т.е. напряжение питания усилителя мощности звуковой частоты); ток умножаем на 0,157 мм 2 , найдя сечение провода; рассчитываем сколько потребуется проводков меньшим сечением. Определившись с количеством витков в первичной обмотке, можно приступать к самой намотке трансформатора автомобильного преобразователя напряжения. Для этого берутся все 12 проводов, если используется провод сечением 0,6 мм, переплетаются косичкой и наматываются на кольца. Вторая часть первичной обмотки наматывается также. Очень важно, чтобы витки обеих обмоток распределялись равномерно по всему кольцу, иначе трансформатор преобразователя будет греться, особенно на максимальной или близкой к этому значению мощности. Можно осуществить намотку другим способом. Намотать 12 отдельных обмоток для одного плеча, а потом точно также для второго и соединить их. Выводы трансформатора сразу идут в печатную плату. Соединять надо так: 1-начало, 2-конец, т.е. 1;2;1;2. По окончанию намотки первичной обмотки можно её обернуть тканевой изоляционной лентой, а потом уже мотать вторичную. Вторичная обмотка мотается аналогично. Количество витков будет зависеть от напряжения, которое вы хотите получить. Можете воспользоваться программой для расчета импульсного трансформатора для автомобильного преобразователя напряжения:

Скачать программу для расчета импульсного трансформатора

Особое внимание также стоит уделить выпрямлению и стабилизации полученного напряжения на выходе трансформатора автомобильного преобразователя. Необходимо подобрать импульсные диоды, чтобы они выдержали необходимую силу тока, способные работать на частоте от 80…100 кГц. На выход необходимо установить дроссели. Для сердечника дросселей можно применить кольца, используемые в компьютерных блоках питания. Кстати, оттуда же можно выпаять и ШИМ – контроллер TL494 (КР1114ЕУ4). Дроссели содержат по 5…6 витков провода сечением не менее 2 мм. Есть ещё одна маленькая хитрость. Обычно при питании устройств, в том числе и усилителей звуковой частоты, используются фильтрующие конденсаторы очень большой ёмкости. Рекомендуется 1000…2000 мкФ на 1 ампер нагрузки. Но для автомобильных преобразователей напряжения важна не сама ёмкость конденсаторов, а количество самих конденсаторов. Т.е. лучше поставить, скажем, 10 штук по 1000 мкФ, чем один на 47000 мкФ.

Структурно принцип работы автомобильного преобразователя напряжения можно описать так. ШИМ контроллер TL494 (КР1114ЕУ4) задает частоту открытия и закрытия транзисторов. Двухтактным такой преобразователь напряжения называется потому, что при открытии одного плеча другое закрывается. Смена режима происходит с заданной частотой ШИМ контроллера. Постоянное напряжение, преобразованное выходным каскадом на мощных транзисторах в переменное, подается на трансформатор. После этого напряжение выпрямляется диодным мостом, фильтруется дросселями и конденсаторами. Ну а дальше автомобильный преобразователь напряжения выполняет непосредственно ту функцию, для которой создавался.

Ну и от полутеории перейдем к практике, добавив в копилку приведенных выше ссылок на схемы преобразователей напряжения ещё следующие схемы.
Автомобильный преобразователь напряжения с мощностью 500 ватт.

Варианты использования выходов автомобильного преобразователя напряжения:

Количество выходных обмоток автомобильного преобразователя напряжения можно уменьшить или вообще модернизировать, применив ультраскоростные диоды, рабочее напряжение которых значительно выше напряжения диодов Шотки, что позволяет получить выходное напряжение вплоть до 90 В, а при замене электролитических фильтрующих конденсаторов на более высоковольтные и выше 90 вольт.

Как видим, в выходном каскаде автомобильного преобразователя напряжения используются мощные полевики IRF3205 (отечественный аналог КП783А). Можно заменить на NTP5426, IRF540, IRF1405, IRF1407, IRF2805.

В модернизированной выходной схеме используются быстродействующие диоды 30EPF06.

Немного планку по мощности и приведем следующую схему автомобильного преобразователя напряжения 300 ватт.

В общем-то принципиальная разница в схемах состоит только в упрощении выходного каскада. Варианты использования выходов преобразователя следующие:

А если мы увеличим количество мощных полевых транзисторов IRF3205 в выходном каскаде преобразователя напряжения до трех штук на плечо, то получим весьма солидную мощность в 700 ватт.

Таким образом, при использовании автомобильного преобразователя напряжения конструктивно должно получиться нечто вроде этого:

Чертеж печатной платы и расположение деталей на ней в формате .lay можете также скачать:

Скачать чертеж печатной платы

Данные преобразователи напряжения, несмотря на упрощенную схемотехнику, достаточно надежны.

Непосредственно перед публикацией статьи, порывшись дополнительно в рунете, пришёл к выводу, что из приведенных выше схем автомобильных преобразователей напряжения можно исключить некоторые компоненты, тем самым значительно упростив конструкцию. А именно, выходной каскад на полевых транзисторах подключается непосредственно к выходному трансформатору. Исключаются дроссели L4 для 300 ваттного и трансформатор TV1 со всей обвязкой для 500 и 700 ваттных преобразователей. Можно исключить оптрон IC1, тем самым убрав блок защиты. В итоге можно получить очень простую для повторения схему автомобильного преобразователя напряжения.

Под эту схему есть также печатная плата в формате .lay. В архиве три печатки. Первый вариант — это печатная плата с подписанными элементами, второй вариант — обычный вариант с одним напряжением на выходе, третий вариант — с двумя разными напряжениями на выходе.

Скачать чертежи печатных плат для последнего варианта схемы.

Обсуждайте в социальных сетях и микроблогах

Оставить комментарий

avatar
  Подписаться  
Уведомление о